Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol. 2014;232(2):199–209. https://doi.org/10.1002/path.4287.
Article
CAS
PubMed
Google Scholar
Aghajani MJ, Yang T, Schmitz U, James A, McCafferty CE, de Souza P, et al. Epithelial-to-mesenchymal transition and its association with PD-L1 and CD8 in thyroid cancer. Endocr Connect. 2020;9(10):1028–41. https://doi.org/10.1530/ec-20-0268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Busillo JMB, J.L. Regulation of CXCR4 Signaling. Biochim Biophys Acta. 2007;1768(4):952–63.
Article
CAS
PubMed
Google Scholar
Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–50. https://doi.org/10.1038/nrc1388.
Article
CAS
PubMed
Google Scholar
Wright LM, Maloney W, Yu X, Kindle L, Collin-Osdoby P, Osdoby P. Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone. 2005;36(5):840–53. https://doi.org/10.1016/j.bone.2005.01.021.
Article
CAS
PubMed
Google Scholar
Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J. 2004;18(11):1240–2. https://doi.org/10.1096/fj.03-0935fje.
Article
CAS
PubMed
Google Scholar
Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, et al. CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010;29(4):709–22. https://doi.org/10.1007/s10555-010-9256-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood. 2009;113(24):6085–93. https://doi.org/10.1182/blood-2008-12-196618.
Article
CAS
PubMed
Google Scholar
Werner TA, Forster CM, Dizdar L, Verde PE, Raba K, Schott M, et al. CXCR4/CXCR7/CXCL12-Axis in Follicular Thyroid Carcinoma. J Cancer. 2018;9(6):929–40. https://doi.org/10.7150/jca.23042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Werner TA, Forster CM, Dizdar L, Verde PE, Raba K, Schott M, et al. CXCR4/CXCR7/CXCL12 axis promotes an invasive phenotype in medullary thyroid carcinoma. Br J Cancer. 2017;117(12):1837–45. https://doi.org/10.1038/bjc.2017.364.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu X, Bai Q, Lu Y, Lu Y, Zhu L, Zhou X, et al. Expression and function of CXCL12/CXCR4/CXCR7 in thyroid cancer. Int J Oncol. 2016;48(6):2321–9. https://doi.org/10.3892/ijo.2016.3485.
Article
CAS
PubMed
PubMed Central
Google Scholar
He X, Wei Q, Zhang X, Xiao J, Jin X, Zhu Y, et al. Immunohistochemical expression of CXCR4 in thyroid carcinomas and thyroid benign lesions. Pathol Res Pract. 2010;206(10):712–5. https://doi.org/10.1016/j.prp.2010.05.003.
Article
CAS
PubMed
Google Scholar
Wang N, Luo HJ, Yin GB, Dong CR, Xu M, Chen GG, et al. Overexpression of HIF-2α, TWIST, and CXCR4 is associated with lymph node metastasis in papillary thyroid carcinoma. Clin Dev Immunol. 2013;2013:589423. https://doi.org/10.1155/2013/589423.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torregrossa L, Giannini R, Borrelli N, Sensi E, Melillo RM, Leocata P, et al. CXCR4 expression correlates with the degree of tumor infiltration and BRAF status in papillary thyroid carcinomas. Mod Pathol. 2012;25(1):46–55. https://doi.org/10.1038/modpathol.2011.140.
Article
CAS
PubMed
Google Scholar
Sauter G, Simon R, Hillan K. Tissue microarrays in drug discovery. Nat Rev Drug Discov. 2003;2(12):962–72. https://doi.org/10.1038/nrd1254.
Article
CAS
PubMed
Google Scholar
Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352). https://doi.org/10.1126/science.aan2507.
Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a Shared Vision for Cancer Genomic Data. N Engl J Med. 2016;375(12):1109–12. https://doi.org/10.1056/NEJMp1607591.
Article
PubMed
PubMed Central
Google Scholar
Weber F. Lymphocytes and thyroid cancer: more to it than meets the eye? Endocr Relat Cancer. 2014;21(3):C1–5. https://doi.org/10.1530/erc-14-0229.
Article
CAS
PubMed
Google Scholar
Grivennikov SI, Karin M. Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev. 2010;20(1):65–71. https://doi.org/10.1016/j.gde.2009.11.004.
Article
CAS
PubMed
Google Scholar
Blessin NC, Spriestersbach P, Li W, Mandelkow T, Dum D, Simon R, et al. Prevalence of CD8(+) cytotoxic lymphocytes in human neoplasms. Cell Oncol (Dordr). 2020;43(3):421–30. https://doi.org/10.1007/s13402-020-00496-7.
Article
CAS
PubMed
Google Scholar
French JD. Immunotherapy for advanced thyroid cancers - rationale, current advances and future strategies. Nat Rev Endocrinol. 2020;16(11):629–41. https://doi.org/10.1038/s41574-020-0398-9.
Article
PubMed
Google Scholar
Meng S, Li L, Zhou M, Jiang W, Niu H, Yang K. Distribution and prognostic value of tumorinfiltrating T cells in breast cancer. Mol Med Rep. 2018;18(5):4247–58. https://doi.org/10.3892/mmr.2018.9460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Wei X, Pan Y, Xu J, Si Y, Min Z, et al. A new risk factor indicator for papillary thyroid cancer based on immune infiltration. Cell Death Dis. 2021;12(1):51. https://doi.org/10.1038/s41419-020-03294-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90. https://doi.org/10.1016/j.cell.2014.09.050.
Article
CAS
Google Scholar
Coperchini F, Croce L, Marino M, Chiovato L, Rotondi M. Role of chemokine receptors in thyroid cancer and immunotherapy. Endocr Relat Cancer. 2019;26(8):R465–R78. https://doi.org/10.1530/ERC-19-0163.
Article
CAS
PubMed
Google Scholar
Fallahi P, Ferrari SM, Piaggi S, Luconi M, Cantini G, Gelmini S, et al. The paramount role of cytokines and chemokines in papillary thyroid cancer: a review and experimental results. Immunol Res. 2018;66(6):710–22. https://doi.org/10.1007/s12026-018-9056-x.
Article
CAS
PubMed
Google Scholar
Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 2013;14(6):e218–28. https://doi.org/10.1016/s1470-2045(12)70582-x.
Article
CAS
PubMed
Google Scholar
Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–31. https://doi.org/10.1158/1078-0432.Ccr-09-2329.
Article
CAS
PubMed
Google Scholar
Cao X, Zhu J, Li X, Ma Y, He Q. Expression of CXCR4 and CXCR7 in papillary thyroid carcinoma and adjacent tissues and their relationship with pathologic indicators of tumor aggressiveness. Endocr J. 2021. https://doi.org/10.1507/endocrj.EJ21-0076.
Goedhart M, Gessel S, van der Voort R, Slot E, Lucas B, Gielen E, et al. CXCR4, but not CXCR3, drives CD8(+) T-cell entry into and migration through the murine bone marrow. Eur J Immunol. 2019;49(4):576–89. https://doi.org/10.1002/eji.201747438.
Article
CAS
PubMed
Google Scholar
Peng GL, Li L, Guo YW, Yu P, Yin XJ, Wang S, et al. CD8+ cytotoxic and FoxP3+ regulatory T lymphocytes serve as prognostic factors in breast cancer. Am J Transl Res. 2019;11(8):5039–53.
van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20(4):218–32. https://doi.org/10.1038/s41568-019-0235-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Tan Y, Qian Y, Xue W, Wang Y, Du J, et al. Clinicopathologic and prognostic significance of tumor-infiltrating CD8+ T cells in patients with hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore). 2019;98(2):e13923. https://doi.org/10.1097/MD.0000000000013923.
Article
CAS
PubMed
Google Scholar
Goode EL, Block MS, Kalli KR, Vierkant RA, Chen W, Fogarty ZC, et al. Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer. JAMA Oncol. 2017;3(12):e173290. https://doi.org/10.1001/jamaoncol.2017.3290.
Article
PubMed
PubMed Central
Google Scholar
Kim SH, Go SI, Song DH, Park SW, Kim HR, Jang I, et al. Prognostic impact of CD8 and programmed death-ligand 1 expression in patients with resectable non-small cell lung cancer. Br J Cancer. 2019;120(5):547–54. https://doi.org/10.1038/s41416-019-0398-5.
Article
PubMed
PubMed Central
Google Scholar
Rabold K, Gielen PR, Kers-Rebel ED, Netea MG, Smit JWA, Adema GJ, et al. T-Cell lymphopenia in patients with advanced thyroid carcinoma is associated with poor prognosis. Oncologist. 2019;24(3):e106–e10. https://doi.org/10.1634/theoncologist.2018-0422.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aghajani MJ, Yang T, McCafferty CE, Graham S, Wu X, Niles N. Predictive relevance of programmed cell death protein 1 and tumor-infiltrating lymphocyte expression in papillary thyroid cancer. Surgery. 2018;163(1):130–6. https://doi.org/10.1016/j.surg.2017.04.033.
Article
PubMed
Google Scholar
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30. https://doi.org/10.1038/nature21349.
Article
CAS
PubMed
Google Scholar
Däster S, Eppenberger-Castori S, Hirt C, Soysal SD, Delko T, Nebiker CA, et al. Absence of myeloperoxidase and CD8 positive cells in colorectal cancer infiltrates identifies patients with severe prognosis. Oncoimmunology. 2015;4(12):e1050574. https://doi.org/10.1080/2162402x.2015.1050574.
Article
PubMed
PubMed Central
Google Scholar
Lalos A, Tulek A, Tosti N, Mechera R, Wilhelm A, Soysal S, et al. Prognostic significance of CD8+ T-cells density in stage III colorectal cancer depends on SDF-1 expression. Sci Rep. 2021;11(1):775. https://doi.org/10.1038/s41598-020-80382-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weixler B, Renetseder F, Facile I, Tosti N, Cremonesi E, Tampakis A, et al. Phosphorylated CXCR4 expression has a positive prognostic impact in colorectal cancer. Cell Oncol (Dordr). 2017;40(6):609–19. https://doi.org/10.1007/s13402-017-0348-2.
Article
CAS
PubMed
Google Scholar