Association A. Classification and diagnosis of diabetes. Diabetes care. 2017;40(Supplement 1):S11–24.
Article
Google Scholar
Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab. 2017;6(9):943–57. https://doi.org/10.1016/j.molmet.2017.06.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barcala Tabarrozzi AE, Castro CN, Dewey R, Sogayar M, Labriola L, Perone MJ. Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus. Clin Exp Immunol. 2013;171(2):135–46. https://doi.org/10.1111/cei.12019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansen JB, Arkhammar G, Per O, Bodvarsdottir TB, Wahl P. Inhibition of insulin secretion as a new drug target in the treatment of metabolic disorders. Curr Med Chem. 2004;11(12):1595–615. https://doi.org/10.2174/0929867043365026.
Article
PubMed
Google Scholar
Lencioni C, Lupi R, Del Prato S. Beta-cell failure in type 2 diabetes mellitus. Curr Diab Rep. 2008;8(3):179–84. Epub 2008/07/16. https://doi.org/10.1007/s11892-008-0031-0.
Article
CAS
PubMed
Google Scholar
Andreassi MG. Metabolic syndrome, diabetes and atherosclerosis: influence of gene–environment interaction. Mutat Res/Fundam Mol Mech Mutagen. 2009;667(1–2):35–43. https://doi.org/10.1016/j.mrfmmm.2008.10.018.
Article
CAS
Google Scholar
Roche HM, Phillips C, Gibney MJ. The metabolic syndrome: the crossroads of diet and genetics. Proc Nutr Soc. 2005;64(3):371–7. https://doi.org/10.1079/PNS2005445.
Article
CAS
PubMed
Google Scholar
Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 1998;47(2):224–9. https://doi.org/10.2337/diab.47.2.224.
Article
CAS
PubMed
Google Scholar
Rees D, Alcolado J. Animal models of diabetes mellitus. Diabet Med. 2005;22(4):359–70. https://doi.org/10.1111/j.1464-5491.2005.01499.x.
Article
CAS
PubMed
Google Scholar
Polo V, Saibene A, Pontiroli A. Nicotinamide improves insulin secretion and metabolic control in lean type 2 diabetic patients with secondary failure to sulphonylureas. Acta Diabetol. 1998;35(1):61–4. https://doi.org/10.1007/s005920050103.
Article
CAS
PubMed
Google Scholar
Pontiroli A, Galli L. Duration of obesity is a risk factor for non-insulin-dependent diabetes mellitus, not for arterial hypertension or for hyperlipidaemia. Acta Diabetol. 1998;35(3):130–6. https://doi.org/10.1007/s005920050117.
Article
CAS
PubMed
Google Scholar
Williams A, Ramsden D. Nicotinamide: a double edged sword. Parkinsonism Relat Disord. 2005;11(7):413–20. https://doi.org/10.1016/j.parkreldis.2005.05.011.
Article
PubMed
Google Scholar
Angelis KD, Senador DD, Mostarda C, Irigoyen MC, Morris M. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice. Am J Phys Regul Integr Comp Phys. 2012;302(8):R950–R7. https://doi.org/10.1152/ajpregu.00450.2011.
Article
CAS
Google Scholar
Bernardes N, da Silva DD, Stoyell-Conti FF, de Oliveira B-MJ, Malfitano C, Caldini EG, et al. Baroreflex impairment precedes cardiometabolic dysfunction in an experimental model of metabolic syndrome: role of inflammation and oxidative stress. Sci Rep. 2018;8(1):8578. https://doi.org/10.1038/s41598-018-26816-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin M, Ai J, Harden SW, Huang C, Li L, Wurster RD, et al. Impairment of baroreflex control of heart rate and structural changes of cardiac ganglia in conscious streptozotocin (STZ)-induced diabetic mice. Auton Neurosci. 2010;155(1–2):39–48. https://doi.org/10.1016/j.autneu.2010.01.004.
Article
PubMed
Google Scholar
Svensson MK, Lindmark S, Wiklund U, Rask P, Karlsson M, Myrin J, et al. Alterations in heart rate variability during everyday life are linked to insulin resistance. A role of dominating sympathetic over parasympathetic nerve activity? Cardiovasc Diabetol. 2016;15(1):91.
Article
Google Scholar
Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7):e3000411 Epub 2020/07/15.
Article
CAS
Google Scholar
Brahmanaidu P, Uddandrao VS, Sasikumar V, Naik RR, Pothani S, Begum MS, et al. Reversal of endothelial dysfunction in aorta of streptozotocin-nicotinamide-induced type-2 diabetic rats by S-Allylcysteine. Mol Cell Biochem. 2017;432(1–2):25–32. https://doi.org/10.1007/s11010-017-2994-0.
Article
CAS
PubMed
Google Scholar
Giribabu N, Roslan J, Rekha SS, Salleh N. Methanolic seed extract of Vitis vinifera ameliorates oxidative stress, inflammation and ATPase dysfunction in infarcted and non-infarcted heart of streptozotocin–nicotinamide induced male diabetic rats. Int J Cardiol. 2016;222:850–65. https://doi.org/10.1016/j.ijcard.2016.07.250.
Article
PubMed
Google Scholar
Mostarda C, Rogow A, Silva ICM, Raquel N, Jorge L, Rodrigues B, et al. Benefits of exercise training in diabetic rats persist after three weeks of detraining. Auton Neurosci. 2009;145(1–2):11–6. https://doi.org/10.1016/j.autneu.2008.10.010.
Article
CAS
PubMed
Google Scholar
Moraes-Silva IC, Mostarda C, Moreira ED, Silva KAS, dos Santos F, De Angelis K, et al. Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development. J Appl Physiol. 2013;114(6):786–91. https://doi.org/10.1152/japplphysiol.00586.2012.
Article
CAS
PubMed
Google Scholar
Novelli E, Diniz Y, Galhardi C, Ebaid G, Rodrigues H, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41(1):111–9. https://doi.org/10.1258/002367707779399518.
Article
CAS
PubMed
Google Scholar
Brito J, Ponciano K, Figueroa D, Bernardes N, Sanches I, Irigoyen M, et al. Parasympathetic dysfunction is associated with insulin resistance in fructose-fed female rats. Braz J Med Biol Res. 2008;41(9):804–8. https://doi.org/10.1590/S0100-879X2008005000030.
Article
CAS
PubMed
Google Scholar
Conti FF. Brito JdO, Bernardes N, Dias DdS, Malfitano C, Morris M, et al. positive effect of combined exercise training in a model of metabolic syndrome and menopause: autonomic, inflammatory, and oxidative stress evaluations. Am J Phys Regul Integr Comp Phys. 2015;309(12):R1532–R9. https://doi.org/10.1152/ajpregu.00076.2015.
Article
CAS
Google Scholar
Furuya D, Binsack R, Machado U. Low ethanol consumption increases insulin sensitivity in Wistar rats. Braz J Med Biol Res. 2003;36(1):125–30. https://doi.org/10.1590/S0100-879X2003000100017.
Article
CAS
PubMed
Google Scholar
Bonoro E, Moghetti P, Zancanaro C, Cigolini M, Querena M, Cacciatori V, et al. Estimates of in vivo insulin action in man: comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies. JClin Endocrinol Metab. 1989;68(2):374–8. https://doi.org/10.1210/jcem-68-2-374.
Article
Google Scholar
Rodrigues B, Mostarda CT, Jorge L, Barboza CA, Grans CF, De Angelis K, et al. Impact of myocardial infarction on cardiac autonomic function in diabetic rats. J Diabetes Complicat. 2013;27(1):16–22. https://doi.org/10.1016/j.jdiacomp.2012.08.002.
Article
Google Scholar
Wichi R, Malfitano C, Rosa K, De Souza SB, Salemi V, Mostarda C, et al. Noninvasive and invasive evaluation of cardiac dysfunction in experimental diabetes in rodents. Cardiovasc Diabetol. 2007;6(1):14. https://doi.org/10.1186/1475-2840-6-14.
Article
PubMed
PubMed Central
Google Scholar
Mostarda C, Rodrigues B, Vane M, Moreira ED, Rosa K, Moraes-Silva IC, et al. Autonomic impairment after myocardial infarction: role in cardiac remodelling and mortality. Clin Exp Pharmacol Physiol. 2010;37(4):447–52. https://doi.org/10.1111/j.1440-1681.2009.05327.x.
Article
CAS
PubMed
Google Scholar
Jorge L, Rodrigues B, Rosa KT, Malfitano C, Loureiro TCA, Medeiros A, et al. Cardiac and peripheral adjustments induced by early exercise training intervention were associated with autonomic improvement in infarcted rats: role in functional capacity and mortality. Eur Heart J. 2010;32(7):904–12. https://doi.org/10.1093/eurheartj/ehq244.
Article
PubMed
Google Scholar
dos Santos F, Moraes-Silva IC, Moreira ED, Irigoyen M-C. The role of the baroreflex and parasympathetic nervous system in fructose-induced cardiac and metabolic alterations. Sci Rep. 2018;8(1):10970. https://doi.org/10.1038/s41598-018-29336-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bedoya F, Solano F, Lucas M. N-monomethyl-arginine and nicotinamide prevent streptozotocin-induced double strand DNA break formation in pancreatic rat islets. Experientia. 1996;52(4):344–7. https://doi.org/10.1007/BF01919538.
Article
CAS
PubMed
Google Scholar
LeDoux S, Woodley S, Patton N, Wilson G. Mechanisms of nitrosourea-induced β-cell damage: alterations in DNA. Diabetes. 1986;35(8):866–72. https://doi.org/10.2337/diab.35.8.866.
Article
CAS
PubMed
Google Scholar
Dall'Ago P, Schaan BDA, da Silva VOK, Werner J, da Silva Soares PP, de Angelis K, et al. Parasympathetic dysfunction is associated with baroreflex and chemoreflex impairment in streptozotocin-induced diabetes in rats. Auton Neurosci. 2007;131(1–2):28–35. https://doi.org/10.1016/j.autneu.2006.06.005.
Article
CAS
PubMed
Google Scholar
Dall'Ago P, Silva V, De Angelis K, Irigoyen M, Fazan R Jr, Salgado H. Reflex control of arterial pressure and heart rate in short-term streptozotocin diabetic rats. Braz J Med Biol Res. 2002;35(7):843–9. https://doi.org/10.1590/S0100-879X2002000700013.
Article
CAS
PubMed
Google Scholar
Rodrigues B, Rosa KT, Medeiros A, Schaan BD, Brum PC, De Angelis K, et al. Hyperglycemia can delay left ventricular dysfunction but not autonomic damage after myocardial infarction in rodents. Cardiovasc Diabetol. 2011;10(1):26. https://doi.org/10.1186/1475-2840-10-26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Souza SB, Flues K, Paulini J, Mostarda C, Rodrigues B, Souza LE, et al. Role of exercise training in cardiovascular autonomic dysfunction and mortality in diabetic ovariectomized rats. Hypertension. 2007;50(4):786–91. https://doi.org/10.1161/HYPERTENSIONAHA.107.095000.
Article
CAS
PubMed
Google Scholar
Maeda C, Fernandes T, Timm H, Irigoyen M. Autonomic dysfunction in short-term experimental diabetes. Hypertension. 1995;26(6):1100–4. https://doi.org/10.1161/01.HYP.26.6.1100.
Article
CAS
PubMed
Google Scholar
De Angelis K, Schaan B, Maeda C, Dall'Ago P, Wichi RB, Irigoyen MC. Cardiovascular control in experimental diabetes. Braz J Med Biol Res. 2002;35(9):1091–100. https://doi.org/10.1590/S0100-879X2002000900010.
Article
PubMed
Google Scholar
da Palma RK, Moraes-Silva IC, da Silva DD, Shimojo GL, Conti FF, Bernardes N, et al. Resistance or aerobic training decreases blood pressure and improves cardiovascular autonomic control and oxidative stress in hypertensive menopausal rats. J Appl Physiol. 2016;121(4):1032–8. https://doi.org/10.1152/japplphysiol.00130.2016.
Article
CAS
PubMed
Google Scholar
da Silva DD, Moraes-Silva IC, Bernardes N, de Oliveira B-MJ, Stoyell-Conti FF, Machi JF, et al. Exercise training initiated at old stage of lifespan attenuates aging-and ovariectomy-induced cardiac and renal oxidative stress: role of baroreflex. Exp Gerontol. 2019;124:110635. https://doi.org/10.1016/j.exger.2019.110635.
Article
Google Scholar
Dos Santos L, Mello A, Antonio EL, Tucci PJF. Determination of myocardial infarction size in rats by echocardiography and tetrazolium staining: correlation, agreements, and simplifications. Braz J Med Biol Res. 2008;41(3):199–201. https://doi.org/10.1590/S0100-879X2008005000007.
Article
PubMed
Google Scholar
dos Santos Silva KA, da Silva LR, Rampaso RR, de Abreu NP, Moreira ÉD, Mostarda CT, et al. Previous exercise training has a beneficial effect on renal and cardiovascular function in a model of diabetes. PLoS One. 2012;7(11):e48826. https://doi.org/10.1371/journal.pone.0048826.
Article
CAS
Google Scholar
Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62. https://doi.org/10.2337/diacare.28.4.956.
Article
PubMed
Google Scholar
Guo S, Chen Q, Sun Y, Chen J. Nicotinamide protects against skeletal muscle atrophy in streptozotocin-induced diabetic mice. Arch Physiol Biochem. 2019;125(5):470–7. https://doi.org/10.1080/13813455.2019.1638414.
Article
CAS
PubMed
Google Scholar
Crinò Α, Schiaffini R, Ciampalini P, Suraci M, Manfrini S, Visaiii N, et al. A two year observational study of Nicotinamide and intensive insulin therapy in patients with recent onset type I diabetes mellitus. J Pediatr Endocrinol Metab. 2005;18(8):749–54. https://doi.org/10.1515/jpem.2005.18.8.749.
Article
PubMed
Google Scholar
Dollerup OL, Christensen B, Svart M, Schmidt MS, Sulek K, Ringgaard S, et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr. 2018;108(2):343–53. https://doi.org/10.1093/ajcn/nqy132.
Article
PubMed
Google Scholar
Szkudelski T. Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. 2012;237(5):481–90. https://doi.org/10.1258/ebm.2012.011372.
Article
CAS
Google Scholar