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Abstract 

Background  Compared to their healthy counterparts, patients with type 2 diabetes (T2D) can exhibit an altered gut 
microbiota composition, correlated with detrimental outcomes, including reduced insulin sensitivity, dyslipidemia, 
and increased markers of inflammation. However, a typical T2D microbiota profile is not established. The aim of this 
pilot study was to explore the gut microbiota and bacteria associated with prediabetes (pre-T2D) patients, and treat-
ment naïve T2D patients, compared to healthy subjects.

Methods  Fecal samples were collected from patients and healthy subjects (from Norway). The bacterial genomic 
DNA was extracted, and the microbiota analyzed utilizing the bacterial 16S rRNA gene. To secure a broad coverage 
of potential T2D associated bacteria, two technologies were used: The GA-map® 131-plex, utilizing 131 DNA probes 
complementary to pre-selected bacterial targets (covering the 16S regions V3-V9), and the LUMI-Seq™ platform, 
a full-length 16S sequencing technology (V1-V9). Variations in the gut microbiota between groups were explored 
using multivariate methods, differential bacterial abundance was estimated, and microbiota signatures discriminating 
the groups were assessed using classification models.

Results  In total, 24 pre-T2D patients, 18 T2D patients, and 52 healthy subjects were recruited. From the LUMI-Seq™ 
analysis, 10 and 9 bacterial taxa were differentially abundant between pre-T2D and healthy, and T2D and healthy, 
respectively. From the GA-map® 131-plex analysis, 10 bacterial markers were differentially abundant when compar-
ing pre-T2D and healthy. Several of the bacteria were short-chain fatty acid (SCFA) producers or typical opportunistic 
bacteria. Bacteria with similar function or associated properties also contributed to the separation of pre-T2D and T2D 
from healthy as found by classification models. However, limited overlap was found for specific bacterial genera 
and species.

Conclusions  This pilot study revealed that differences in the abundance of SCFA producing bacteria, and an increase 
in typical opportunistic bacteria, may contribute to the variations in the microbiota separating the pre-T2D and T2D 
patients from healthy subjects. However, further efforts in investigating the relationship between gut microbiota, 
diabetes, and associated factors such as BMI, are needed for developing specific diabetes microbiota signatures.
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Background
Type 2 diabetes (T2D) is a significant global health 
challenge, constituting over 90% of diabetes cases 
worldwide, and with more than 700 million adults esti-
mated to be impacted by 2045 [1]. Often there is an 
extended pre-diagnostic period, and a large propor-
tion of people with T2D are thought to be undiagnosed. 
T2D pathophysiology involves gradually rising blood 
glucose levels (hyperglycemia) due to increasing insu-
lin resistance and/or decreasing beta cell function, and 
is strongly associated with overweight and obesity and/
or central adiposity [1, 2]. Prediabetic individuals have 
blood glucose levels higher than normal but below the 
threshold for T2D, are often overweight, and have an 
elevated risk of T2D and cardiovascular disease.

Gut microbiota plays a pivotal role in metabolism, 
immunomodulation and overall human health, and dis-
ruptions to the balance of this community are associ-
ated with many diseases, including inflammatory bowel 
disease (IBD) and irritable bowel syndrome (IBS), and 
metabolic diseases such as T2D [3]. Abundant evidence 
in both animal models and humans with T2D point to 
an altered or dysbiotic gut microbiota composition as 
compared to that found in healthy individuals [4–9]. 
Individuals with an unbalanced gut microbiota compo-
sition may exhibit a plethora of detrimental health out-
comes: higher BMI, increased fat mass, reduced insulin 
sensitivity, dyslipidemia, and an increased inflamma-
tory state [10]. It has been proposed that the intestinal 
bacteria and the metabolites they produce play a role 
in inducing a harmful chronic low-grade inflammatory 
state and subsequent development of insulin resistance 
[3, 9]. However, so far, no typical microbiota profile for 
T2D has been identified.

Over the last decade, the most common approach for 
microbiota profiling has been to target the nine hyper-
variable regions (V1–V9) of the bacterial 16S rRNA gene. 
This relatively short (∼1,500  bp) gene region provides 
phylogenetic signatures on different taxonomic levels. 
The hypervariable regions are surrounded by highly con-
served sequences, which are used for primer design.

The aim of this pilot study was to explore the gut 
microbiota and bacteria associated with pre-T2D 
patients, and newly diagnosed, treatment naïve T2D 
patients, compared to healthy subjects. To secure a broad 
coverage of potential T2D associated bacteria, two tech-
nologies were used: The GA-map® technology platform 
131-plex (GA-map® 131-plex), utilizing 131 DNA probes 
complementary to pre-selected bacterial targets (cover-
ing the 16S rRNA gene regions V3-V9), and the Long 16S 
using Unique Molecular Identifiers – Sequencing (LUMI-
Seq™) platform, a full-length 16S sequencing technology 
(V1-V9).

Methods
Study population and sample collection
Adult patients diagnosed with either pre-T2D (n = 24) 
or T2D (n = 18) were recruited, and native fecal samples 
collected, by three diabetes clinics in Norway (Østerås, 
Sandnes and Tananger). In addition, healthy adult sub-
jects (n = 52) were recruited, and native fecal samples 
collected by Oslo Metropolitan University (OsloMet) in 
Oslo, Norway. The study was approved by the regional 
Norwegian ethical committee (REC South-East, Nor-
way), and informed consent was obtained from all par-
ticipants. All samples and information were de-identified 
before analysis. The samples collected by the clinics were 
sent non-frozen to Genetic Analysis (GA), Oslo, Norway 
by mail and frozen upon delivery. The samples collected 
by OsloMet were frozen upon delivery to the university, 
before transferal to GA (frozen, on dry ice). All fecal 
samples were frozen (between -40 °C and -80 °C) within 
5 days after collection before further processing.

A case record form was completed for all participants. 
The T2D patients were all newly diagnosed and treat-
ment-naïve, except for one patient (> 5 months since the 
last dose of metformin). Criteria for the inclusion of T2D 
patients included analysis of blood glucose levels, specifi-
cally, hemoglobin A1c (HbA1c) ≥ 6.5%. Inclusion criteria 
for the pre-T2D patients included HbA1c of 6.0–6.4%. 
Criteria for the inclusion of healthy subjects included no 
history of diabetes or pre-diabetes, and HbA1c < 6.0%. 
Exclusion criteria for all groups included recent use of 
antibiotics (last 4 weeks), and a positive fecal calprotec-
tin (F-cal) test (> 200 mg/kg). See Table 1 for character-
istics of the study population. Samples from 86 subjects 
(16 T2D, 22 pre-T2D and 48 healthy) were analyzed 
with LUMI-Seq™ and included in the downstream data 
analysis (4 healthy, 2 pre-T2D and 2 T2D excluded after 
sequencing due to low taxa counts). Samples from 78 
subjects (18 T2D, 22 pre-T2D and 38 healthy) were ana-
lyzed with the GA-map® 131-plex, after exclusions (11 
healthy subjects excluded due to lack of sufficient num-
ber of wells in the plate setup, and additional 5 subjects (2 
pre-T2D, 3 healthy) due to F-cal > 200 mg/kg).

Sample processing and analysis
Total bacterial genomic DNA extraction was performed 
by GA, using a protocol previously described [11]. 
Briefly, the extraction was performed by fecal homog-
enization (using stirring rod) and mechanical cell lysis 
(FastPrep-96™, MP Biomedicals), followed by chemi-
cal/enzymatic heat lysis and automated DNA extrac-
tion using a MagMAX™ Express-96 or KingFisher™ Flex 
(Thermo Fisher Scientific) in combination with the mag™ 
maxi reagent kit (LGC Genomics GmbH). After extrac-
tion, DNA samples were aliquoted, and aliquots were 
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shipped to BIOASTER in Lyon, France. The DNA sam-
ples were analyzed using the LUMI-Seq™ platform (BIO-
ASTER, France) and by the GA-map® 131-plex (Genetic 
Analysis, Norway) (Fig. 1).

GA‑map® 131‑plex (GA‑map® Technology Platform 131‑plex)
The GA-map® 131-plex utilizes a pre-targeted approach, 
based on DNA probe hybridization to bacterial 16S 
rRNA gene targets, to identify and characterize bacte-
rial profiles from fecal samples. This research-only panel 
of DNA probes (bacterial markers) was established to 
cover major bacterial observations made from the lit-
erature relating to the microbiota in healthy, IBS and 

IBD [11]. Disruptions to the regular community of bac-
teria have also been associated with other conditions, 
such as diabetes type 2 [3]. Each bacterial marker was 
designed to identify a specific bacterial species or group 
(e.g., phylum, class, genus), based on their 16S rRNA 
gene sequence [11]. As such, a large number of bacteria 
are detected at different taxonomic levels. The bacterial 
markers were intensively tested in-silico (target detection, 
non-target exclusion, cross‐labelling, self-labelling, and 
cross hybridization), and against bacterial DNA from a 
selection of culturable bacterial species in vitro.

The same laboratory procedures as described for the 
standardized and CE-marked GA-map® technology 

Table 1  Study population – main characteristics

The characteristics of the participants in each of the study groups, analyzed and included in the LUMI-Seq™ and GA-map® 131-plex data analysis (the 25th and 75th 
percentiles are shown in parentheses)
a Samples from 16 T2D, 22 pre-T2D and 48 healthy were analyzed with LUMI-Seq™

b Samples from 18 T2D, 22 pre-T2D and 38 healthy were analyzed with the GA-map® 131-plex

Characteristics Type 2 Diabetesa,b Pre-Type 2 Diabetesa,b Healthya,b

LUMI-Seq (n = 16) 131-plex (n = 18) LUMI-Seq (n = 22) 131-plex (n = 22) LUMI-Seq (n = 48) 131-plex (n = 38)

Male/female (n) 13/3 14/4 12/10 13/9 12/36 8/30

Age, median 64 (54–72) 64 (53–71) 67 (53–74) 66 (53–74) 31 (26–50) 40 (26–51)

BMI, median 28 (26–32) 28 (26–33) 30 (27–34) 30 (26–34) 23 (21–25) 23 (22–25)

HbA1c, %, median 6.8 (6.6–7.2) 6.8 (6.6–7.6) 6.1 (6.1–6.2) 6.1 (6.0–6.2) 5.2 (5.0–5.5) 5.2 (5.0–5.5)

F-cal, mg/kg, median 31 (12–68) 31 (13–61) 50 (32–119) 46 (32–89) 27 (15–55) 23 (14–45)

Fig. 1  Study workflow. Starting with collection of fecal samples, and genomic DNA extraction at Genetic Analysis (GA), through analysis of the DNA 
samples on the two different platforms: LUMI-Seq™ (Long 16S using Unique Molecular Identifiers – Sequencing) at BIOASTER and the GA-map® 
Technology Platform 131-plex at GA
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platform Dysbiosis Test were followed [11], with a few 
modifications (Fig. 1). Briefly (after DNA extraction), the 
16S rRNA gene hypervariable regions V3-V9 are ampli-
fied by the polymerase chain reaction (PCR) using a uni-
versal primer pair [11]. The amplified DNA is hybridized 
to a 131-plex panel of DNA probes, complementary to 
regions within the amplicon specific for the targeted bac-
teria. Hybridized probes are labeled with biotin through 
single nucleotide extension before hybridization of the 
probe-set and solid-phase (carboxylated magnetic beads), 
as well as addition of a detection fluorophore. After 
washing of the samples, the fluorescent signal (probe sig-
nal intensity), corresponding to the abundance of target 
bacteria in the sample, is detected and quantified using a 
Luminex® 200™ instrument (Luminex Corp., Austin, TX, 
USA).

LUMI‑Seq™ platform (Long 16S using Unique Molecular 
Identifiers—Sequencing)
Synthetic-long read sequencing is now emerging in the 
microbiome space as a methodology for generation of 
reliable quality long fragments from Illumina short reads 
[12–14]. In that context, BIOASTER recently developed 
LUMI-Seq™ to recover thousands of full-length 16S 
sequences from complex samples [15]. For this study, the 
standard LUMI-Seq™ workflow was followed (Fig. 1), in 
which each 16S molecule within each sample was first 
barcoded using unique molecular identifiers (UMI) for 
their tracking during the entire workflow. Then, the mol-
ecules were amplified to make multiple copies and to 
increase the signal. The PCR products were then frag-
mented while keeping the UMI information on all pieces. 
The fragments were sequenced using the MiSeq™ plat-
form (Illumina, San Diego, California), in 2 × 200  bp. 
Preprocessing of the raw data was performed to remove 
low-quality ends of the reads with fastp [16]. Read pairs 
sharing the same UMI and the same sample barcode were 
grouped together in silico to make long accurate consen-
sus sequences. Assembly was performed with SPAdes 
[17]. The reconstruction of full-length 16S sequences 
was performed using V-Revcomp [18] and V-Xtractor 
[19]. On average, 4,812 full-length 16S sequences were 
reconstructed per sample (range: 1,124–10,511). Based 
on the UMI redundancy, the LUMI-Seq™ error rate was 
assessed at 0.0047%.

Statistical analysis
GA‑map® 131‑plex data analysis
To account for variable signal levels, the raw signal data 
(fluorescent intensities) was normalized using a hybridi-
zation control, as previously described [11], and back-
ground noise was subtracted. Variations in the bacterial 
profiles between and within the groups (pre-T2D, T2D 

and healthy) were explored using the non-parametric 
multivariate methods principal component analysis 
(PCA) and permutational multivariate  analysis of vari-
ance (PerMANOVA), using Euclidean and Bray–Curtis 
methods, respectively. Possible confounding effects on 
the data due to the clinical variables (e.g., age, BMI, F-cal) 
were also explored, using the above-mentioned methods. 
The non-parametric Wilcoxon Rank Sum Test with Ben-
jamini–Hochberg correction (Stats R package [20]) was 
used to determine significant difference (adjusted p < 0.1) 
in abundance of the bacterial markers.

Microbiota signatures for separation of pre-T2D or 
T2D and healthy subjects were calculated using the caret 
(classification and regression training) R-package [20]. To 
evaluate the robustness and performance of the classifi-
cation models, a tenfold cross-validation was performed. 
90% of the cohort was used for model training and 10% 
for model testing. A parameter, “importance”, rang-
ing from 0 (no contribution) to 100 (maximum possible 
contribution for training of the model), was reported for 
each bacterial marker forming the basis for the micro-
biota signatures. The best performing model, multi-step 
adaptive elastic-net (MSA-ENet) [21], was chosen. A 
ROC curve was built, presenting the mean value of the 
area under the curve (AUC).

LUMI‑Seq™ data analysis
After obtaining full-length 16S sequences, QIIME scripts 
(version 2019.7.0) were used for collapse of 100% iden-
tical sequences [22]. Each unique sequence was then 
assigned to a taxonomy by mapping to a custom 16S 
database made by BIOASTER, as well as the widely used 
SILVA reference database. However, due to the lower 
number of sequences assigned down to the species level, 
the BIOASTER database was chosen for the downstream 
analyses (76% with the 16S database vs. 60% with SILVA). 
Taxa with a total count (summed over all samples) lower 
than five counts were removed. After normalization of 
taxa counts, eight samples (four healthy, two pre-T2D 
and two T2D) showed lower counts and were thus dis-
carded from the analysis to avoid interpretation bias.

Principal coordinates analysis (PCoA) and Per-
MANOVA, using the Bray–Curtis method, was used 
to explore variations in bacterial profiles between and 
within the groups (pre-T2D, T2D and healthy subjects). 
The above-mentioned methods were also used to explore 
any confounding effects on the data due to the clinical 
variables (e.g., age, sex, BMI). Differential abundance 
analyses were conducted with the DESeq2 package from 
Bioconductor [23, 24]. Based on a Wald test, taxa with an 
absolute log-fold change larger than a 0.5 threshold and 
an adjusted p-value lower than 0.05 were considered as 
differentially abundant.
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Microbiota signatures for the separation of pre-T2D 
or T2D and healthy subjects were calculated using one 
of the most commonly used classifiers, Random Forest 
[25], in a fivefold cross-validation. The sample assigna-
tion was repeated until the three groups were equally 
distributed in the 5-fold range based on the Fisher’s exact 
test. As the majority of the taxa and genes were not asso-
ciated with the groups, a univariate selection (Welch test, 
p-value < 1% or 10%) was performed to reduce the dimen-
sionality. The cross-validation procedure was repeated 
300 times.

Results
Multivariate analysis of the bacterial profiles
For the GA-map® 131-plex data, the PCA score plot 
(Fig.  2), indicates the largest differences in the bacterial 
profiles of the pre-T2D group as compared to the healthy 
group. Additionally, PerMANOVA analysis revealed sig-
nificant impact of BMI (p: 0.001, R2: 0.93) on the data, 
while the parameters clinical groups (p: 0.001, R2: 0.063), 
age (p: 0.8, R2: 0.56), sex (p: 0.038, R2: 0.022) and F-cal 
(p: 0.106, R2: 0.67), had little to no significant impact. 
For the LUMI-Seq™ data, PCoA revealed little discrimi-
nation of samples according to the clinical groups (data 
not shown). Further, PerMANOVA analysis showed no 
significant impact on the data of the parameters clinical 
groups (p: 0.168, R2: 0.03), age (p: 0.297, R2: 0.01), sex (p: 

0.23, R2: 0.01) and BMI (p:0.053, R2: 0.02), tested as one 
PerMANOVA, without interaction.

Differential abundance analysis and microbiota signatures
As found by the combined results from the GA-map® 
131-plex and LUMI-Seq™ data analysis, mainly bacteria 
from the phyla Bacillota (Firmicutes), were differentially 
abundant in pre-T2D and T2D compared to the healthy 
group (Tables  2 and 3), also confirmed by classifica-
tion modelling (Figs. 3A&B and 4A&B). Note that from 
the GA-map® 131-plex analysis, no significant abun-
dance differences were found when comparing the T2D 
group and the healthy group.

For instance, according to the GA-map® 131-plex data 
analysis (Table 2), the Clostridia Faecalibacterium praus-
nitzii and Roseburia intestinalis, major producers of the 
SCFA butyrate [26], and the Negativicutes Veilonella spp. 
and Dialister (D. invisus), that can produce SCFAs such 
as propionate and acetate [27, 28], were more abundant 
(adjusted p < 0.1) in healthy than pre-T2D. From the clas-
sification modeling, the butyrate producing R. intestinalis 
and F. prausnitzii [26] were also among the top ten con-
tributors for the separation of T2D and healthy (Fig. 3B), 
while the Bacteroidota Parabacteroides johnsonii, pro-
ducer of the SCFAs succinate and acetate [29], contrib-
uted to the separation of pre-T2D and healthy (Fig. 3A). 
Based on the LUMI-Seq™ classification modeling, F. 

Fig. 2  Principal Component Analysis (PCA) of GA-map® 131-plex data. The PCA score plot illustrates the similarities and variations of the groups 
healthy (n = 38), pre-T2D (n = 22) and T2D (n = 18), based on scaled and log-transformed normalized signal strength data. 90% confidence ellipses 
are shown for each of the groups
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prausnitzii and another major butyrate producer, Agatho-
bacter rectalis (Eubacterium rectale) [26], and the Nega-
tivicutes Phascolarctobacterium and Dialister, that can 
produce e.g., propionate and acetate [30, 28], were among 
the top ten contributors for separation of pre-T2D and 
healthy (Fig. 4A). The butyrate producers Roseburia and 
Roseburia faecis [26] also contributed to the separation of 
T2D and healthy (Fig. 4B).

Oppositely, e.g., the Clostridia Dorea spp., gas- and 
SCFA-producing bacteria [31], was more abundant in 
pre-T2D according to the GA-map® 131-plex analysis 
(Table  2), and, based on classification modeling, Dorea 
spp. contributed to the separation of pre-T2D and healthy 
(Fig. 3A). Similarly, as found from the LUMI-Seq™ analy-
sis, the gas- and SCFA-producing Dorea formicigenerans 
and D. longicatena [31] were more abundant (adjusted 

Table 2  Differentially abundant bacteria – pre-T2D vs. healthy, GA-map® 131-plex

Bacterial markers with significantly different abundance (adjusted p < 0.1) when comparing the groups pre-T2D (n = 22) and healthy (n = 38), based on the GA-map® 
131-plex data
a Increased (I) or decreased (D) abundance, in pre-T2D (vs. healthy)

Groups Phylum Class Bacterial marker I/Da p adj

Pre-T2D vs. healthy Bacillota (Firmicutes) Clostridia Dorea spp. I 9.30E-02

Roseburia sp. D 9.30E-02

Roseburia intestinalis D 9.30E-02

Faecalibacterium prausnitzii D 3.90E-02

Negativicutes Dialister invisus D 9.30E-02

Veillonella spp. D 8.20E-02

Pseudomonadota (Proteo-
bacteria)

(Phylum marker) Pseudomonadota I 2.00E-02

Gammaproteobacteria Enterobacterales I 3.20E-02

Shigella spp. & Escherichia spp. I 6.90E-02

Betaproteobacteria Sutterella wadsworthensis D 9.30E-02

Table 3  Differentially abundant bacteria — pre-T2D and T2D vs. healthy, LUMI-Seq™

Bacterial taxa with significantly different abundance (adjusted p < 0.05) when comparing the groups pre-T2D (n = 22) and healthy (n = 48), or T2D (n = 16) and healthy 
(n = 48), based on the LUMI-Seq™ data
a Increased or decreased abundance, in pre-T2D (vs. healthy), or in T2D (vs. healthy)

Groups Phylum Class Bacterial taxa Log2Fold 
Changea

p adj

Pre-T2D vs. healthy Bacillota (Firmicutes) Bacilli Bacilli 1.84 2.42E-04

Lactobacillales 1.90 2.42E-04

Streptococcaceae 1.76 4.03E-04

Streptococcus 1.92 2.42E-04

Clostridia Eisenbergiella 1.86 1.20E-03

Eisenbergiella massiliensis 1.43 1.25E-02

Neglecta 1.35 4.03E-04

Neglecta timonensis 1.35 4.03E-04

Oscillibacter valericigenes -0.77 3.26E-02

Bacteroidota (Bacteroidetes) Bacteroidia Bacteroides coprocola -23.36 2.90E-17 

T2D vs. healthy Bacillota (Firmicutes) Clostridia Dorea 1.16 1.22E-02

Dorea formicigenerans 0.89 3.14E-02

Dorea longicatena 1.03 2.34E-02

Anaerotignum -0.99 3.14E-02

Erysipelotrichia Erysipelotrichia 1.05 1.91E-02

Erysipelotrichales 1.05 1.91E-02

Erysipelotrichaceae 1.05 1.91E-02

Turicibacter 0.71 3.56E-02

Turicibacter sanguinis 0.71 3.56E-02
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p < 0.05) in T2D (Table 3), and Dorea was among the top 
ten contributors for the separation of T2D and healthy 
according to classification modeling (Fig. 4B).

Moreover, as found by the LUMI-Seq™ analysis 
(Table  3), Erysipelotrichaceae, possible SCFA pro-
ducers also associated with metabolic disorders and 
inflammation [32, 33], and Turicibacter sanguinis 

Fig. 3  GA-map® 131-plex classification. The 10 most discriminant bacterial markers for separation of the groups A) pre-T2D (n = 22) and healthy 
(n = 38), or B) T2D (n = 18) and healthy (n = 38), based on microbiota signatures. Measured by ‘Bacterial marker importance’ as computed 
by MSA-ENet classifier

Fig. 4  LUMI-Seq™ classification. The 10 most discriminant bacterial taxa for separation of the groups A) pre-T2D (n = 22) and healthy (n = 48), or B) 
T2D (n = 16) and healthy (n = 48), based on microbiota signatures. Measured by ‘Variable importance’ as computed by Random Forest classifier
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(Erysipelotrichia class), a lactate producing bacteria 
[34], were more abundant in T2D. According to clas-
sification modeling, the possible SCFA producing Ery-
sipelotrichia [32], including Holdemanella biformis 
(Eubacterium biforme), contributed to the separation 
of T2D and healthy (Fig. 4B). H. biformis, that can pro-
duce SCFAs such as propionate and butyrate [35], also 
contributed to the separation of pre-T2D and healthy 
based on the GA-map® 131-plex classification mod-
eling (Fig. 3A).

Further, based on the LUMI-Seq™ analysis (Table  3), 
Bacilli, including the lactic acid producing Streptococ-
cus (Lactobacillales order), numerous being opportunis-
tic [36], as well as Eisenbergiella massiliensis (Clostridia 
class), a potential SCFA producer that may be associated 
with obesity [37, 38], and Neglecta timonensis (Clostridia 
class), possibly associated with T2D [39], were more 
abundant in pre-T2D than in healthy. According to clas-
sification modeling, Lactobacillales, that may be both 
commensal and opportunistic [40], was among the top 
ten contributors for separation of pre-T2D and healthy 
(Fig.  4A), and the lactate producing Lactobacillus [41] 
for the separation of T2D and healthy (Fig.  4B). From 
the GA-map® 131-plex classification modeling, Bacilli 
(including Enterococcus faecalis), a diverse bacterial class 
containing both commensal and opportunistic bacte-
ria [40], contributed to the separation of pre-T2D and 
healthy (Fig. 3A), and E. faecalis (Lactobacillales order), 
as well as Bacillota, a highly diverse and abundant group 
of gut bacteria [40], to the separation of T2D and healthy 
(Fig. 3B).

Additionally, the opportunistic pro-inflammatory bac-
teria Pseudomonadota (Proteobacteria) and Shigella 
spp./Escherichia spp. (Gammaproteobacteria class) [42] 
were more abundant in pre-T2D according to the GA-
map® 131-plex analysis (Table 2). Based on classification 
modeling, the Gammaproteobacteria Aeromonas sp., 
and the Bacillota Clostridium sp., a potential pathogen 
[40], were among the top ten contributors for separation 
of pre-T2D and healthy (Fig.  3A), while Pseudomonad-
ota, Campylobacter sp. (Epsilonproteobacteria), typical 
pathogenic bacteria [43], and the Gammaproteobacteria 
Haemophilus sp./Mannheimia sp., contributed to the 
separation of T2D and healthy (Fig. 3B). Pseudomonad-
ota are also found by the LUMI-Seq™ classification to be 
among the top ten contributors for the separation of pre-
T2D and healthy (Fig. 4A).

For the GA-map® 131-plex classification modeling, 
area under the curve (AUC) values of 0.88 or 0.77 were 
achieved for the separation of pre-T2D and healthy sub-
jects, or T2D and healthy subjects, respectively. For the 
LUMI-Seq™ classification modeling, AUC values of 0.78 
or 0.64 were achieved for the separation of pre-T2D 

and healthy subjects, or T2D and healthy subjects, 
respectively.

Discussion
The primary aim of this pilot study was to explore the gut 
microbiota and associated bacteria in pre-T2D and treat-
ment naïve T2D patients, compared to healthy subjects. 
LUMI-Seq™ and the GA-map® 131-plex represent two 
methods which can be used for bacterial profiling and to 
identify bacterial biomarkers. The results represent a pre-
liminary discovery of possible diabetes specific bacterial 
patterns.

Differences in the abundance of SCFA producing 
bacteria in the phylum Bacillota (Firmicutes) between 
healthy subjects and pre-T2D and T2D patients were 
revealed. SCFA producing Bacillota were also among the 
top ten contributors for the separation of pre-T2D and 
T2D from healthy using classification models. For exam-
ple, the SCFA producing bacteria F. prausnitzii and Rose-
buria were found to be less abundant, and the gas- and 
SCFA-producing Dorea more abundant, in pre-T2D and/
or T2D, and were also among the ten most discriminative 
bacteria separating the groups from healthy. Additionally, 
SCFA producing bacteria such A. rectalis (Eubacterium 
rectale) and H. biformis (Eubacterium biforme), were 
indicated by classification models to contribute to this 
separation.

Further, also typical opportunistic bacteria contributed 
to the differentiation between the groups. For instance, 
bacteria from the Bacilli class, such as the opportunistic 
Streptococcus, and typical opportunistic, pro-inflamma-
tory bacteria from the phylum Pseudomonadota (Pro-
teobacteria) were increased in pre-T2D, and as found by 
classification models, contributed to the separation of 
pre-T2D and T2D from healthy.

Roseburia, F. prausnitzii and A. rectalis are major 
SCFA producing bacteria, particularly of butyrate, which 
have been negatively associated with T2D and/or pre-
T2D [44–47]. Oppositely, Dorea, and bacteria from the 
Bacilli class and phylum Pseudomonadota have been 
found increased in T2D and/or pre-T2D [5, 6, 44, 45, 
48]. Interestingly, Dorea may promote inflammation, 
and increased abundance of Dorea in T2D patients has 
also been negatively correlated with the abundance of 
butyrate-producing bacteria [49, 50].

Bacteria and their microbial products can impact the 
development of T2D by various and connected mecha-
nisms, for instance, by affecting gut permeability, inflam-
matory regulation, and glucose metabolism (reviewed in 
[4, 8]). Butyrate producing bacteria and the metabolite 
butyrate are important for promoting anti-inflamma-
tory properties, and maintaining regular gut functions, 
and may also improve insulin resistance and glucose 
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tolerance [51, 52]. In contrast, factors such as bacterial-
derived lipopolysaccharide (LPSs), e.g., coming from 
Pseudomonadota, as well as the increased abundance of 
opportunistic bacteria in itself, can promote inflamma-
tion, and may contribute to the induction of a low-grade 
inflammatory state and insulin resistance [53, 54].

A strength of this study is that DNA was extracted by 
the standardized GA-map® method, and DNA samples 
split, before analysis by the two analysis platforms, as 
the choice of extraction method may influence the end 
results [55, 56]. Thus, the use of one extraction method 
enables easier comparisons of the downstream results. 
Also, the combination of mechanical and chemical lysis 
(as utilized by the GA-map® method), has been shown to 
enhance the extraction of both Gram-negative and -posi-
tive bacteria, and to increase bacterial DNA yields [55, 
56].

Another strength is the inclusion of treatment naïve 
T2D patients, as it has been shown that the use of the 
common diabetes drug Metformin may affect the gut 
microbiota [57, 58]. Including prediabetic patients and 
treatment naïve T2D patients may make it more straight-
forward to understand the connections between the dis-
ease development and gut microbiota—by avoiding the 
effect of treatment or prolonged disease. Further, par-
ticipants included in this study had not used antibiotics 
recently, also known to influence the gut bacterial com-
position [59, 60].

Even though the same criteria for age and BMI were 
used for the inclusion of patients and healthy subjects, 
the healthy subjects were younger and had lower BMI 
(and included more females). Also, the pre-T2D group 
had a slightly higher median F-cal, and the LUMI-Seq™ 
analysis included 5 subjects that should have been 
excluded due to F-cal > 200. While PerMANOVA of the 
GA-map® 131-plex data, showed that BMI had a signifi-
cant effect on the data, F-cal levels did not. This is per-
haps not surprising, as diabetes is strongly associated 
with higher BMI/overweight [1, 2].

The GA-map® 131-plex detects 131 DNA probes rep-
resenting pre-selected 16S rRNA bacterial targets, while 
the LUMI-Seq™ platform entails full length 16S rRNA 
sequencing. Differences in the targeted 16S regions for 
the GA-map® 131-plex and LUMI-Seq™ (V3-V9 vs. 
V1-V9, respectively), as well as the selected targets and 
the pre-determined taxonomic levels of the GA-map® 
method, may lead to differences in the phylogenetic 
resolution. This may be one reason for the two meth-
od’s limited overlap in genera and species of potential 
T2D associated bacteria. For instance, Turicibacter san-
guinis, found elevated in T2D by LUMI-Seq™, cannot be 
detected directly by the GA-map® 131 plex – however, 
may be covered by the broad Bacillota marker. Another 

limitation may be the use of different statistical methods, 
chosen to fit the dataset in question. For instance, for the 
GA-map® 131-plex data, bacterial abundances were con-
sidered as significantly different if p.adj. < 0.1, as a limit of 
0.05 gave limited results.

It is critical for researchers to take into considera-
tion the strengths and limitations of different platforms 
and choose a system appropriate for their experimental 
design. The GA-map® platform offers the advantage of 
a standardized method, utilizing a pre-selected target 
approach, allowing for a reduced assay turn-around time 
and less resource-demanding data analysis. At the level 
of genera, the GA-map® technology exhibit strong cor-
relation to MiSeq amplicon sequencing [11]. Even though 
the LUMI-Seq™ follows similar protocols as the standard 
Illumina sequencing, it is difficult to assess differences 
due to technical variations since no comparative study 
has been performed. However, the low error rate and the 
high number of sequences assigned to the species level 
in this study illustrates that the LUMI-Seq™ technology 
constitutes a robust approach for microbiota profiling 
studies.

This pilot study focused on a limited number of Scan-
dinavian (Norwegian) participants only, and so the 
results and interpretation should be taken with caution. 
The recruitment and inclusion of treatment naïve T2D 
patients is especially challenging due to, following stand-
ard guidelines, the limited time between diagnosis and 
start of treatment. The lower number of pre-T2D and 
T2D patients may have affected the outcome and can be 
one explanation for the pre-T2D group seemingly hav-
ing the most distinct microbiota composition. Differ-
ences in diet may be another factor affecting the results, 
as no detailed description of the diet was recorded. To 
strengthen the foundation for developing bacterial signa-
tures for Type 2 diabetes, future studies should be larger, 
international, multi-site studies, to account for variation 
in inter-individual microbiota. Possible confounding fac-
tors that ought to be controlled closely include medica-
tion-use, diet, and lifestyle [59–63].

Multiple studies have provided compelling evidence 
of an altered state in gut microbiota composition in pre-
T2D and T2D individuals as compared to healthy sub-
jects, with a strong correlation to insulin resistance and 
β-cell dysfunction, detected even prior to glucose abnor-
malities in these individuals [46, 64–66]. The implication 
of an altered gut microbiota composition in diabetic and 
prediabetic patients was also supported by this study.

Conclusions
This pilot study revealed that differences in the abun-
dance of short chain fatty acid (SCFA) producing bacte-
ria, and an increase in typical inflammation-associated 
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or potentially pro-inflammatory or opportunistic bac-
teria, may contribute to the variations in the microbi-
ota separating the pre-T2D and T2D patients from the 
healthy subjects. However, further efforts in investigat-
ing the relationship between gut microbiota, diabetes, 
and associated factors such as BMI, are needed for 
developing specific diabetes microbiota signatures.
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