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Abstract

Hyperuricemia is associated with insulin resistance, pancreatic β-cell dysfunction and consequently with
development of type 2 diabetes. Although a direct relationship between high levels of uric acid (UA) and the
development of diabetes is still a controversial issue, there is some evidence that strongly points to pancreatic β-
cells damage as a result of high serum UA levels. Here, the mechanisms underlying UA-induced β-cell damage are
discussed. Available literature indicates that UA can decrease glucose-stimulated insulin secretion and cause β-cell
death. The mechanisms underlying these effects are UA-induced oxidative stress and inflammation within the β-
cells. UA also stimulates inducible nitric oxide (NO) synthase (iNOS) gene expression leading to NO-induced β-cell
dysfunction. Thus hyperuricemia may potentially cause β-cell dysfunction, leading to diabetes. It may be
hypothesized that in hyperuricemic subjects, UA-lowering drugs may be beneficial in preventing diabetes.
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Background
Worldwide, the prevalence of diabetes is about 8–9 % [1,
2] and its incidence varies between 2.9 and 23.5 per
1000 population [3]. The worldwide prevalence of gout,
defined as deposition of monosodium urate crystals
mostly in the peripheral joints, ranges from 0.1 to 10 %,
and its incidence varies 0.3 to 6 per 1000 person-years
[4]. Both prevalence [5] and incidence [6] of diabetes are
higher in patients with gout.
Uric acid (UA) is the end product of exogenous and

endogenous purine (adenine and guanine) metabolism
[7, 8]. The liver and the intestine are the major sites of
endogenous UA production [9], which is about 300–
400 mg/day [8]. Dietary contribution is approximately
300 mg/day with a total pool size of 1200 mg in men
and 600 mg in women [10, 11]. UA homeostasis depends
on a balance between production and catabolism [7],
where 20–40 % of UA is excreted by the gastrointestinal

tract and 60–80 % by the kidneys [7, 12]. Secreted UA
by the intestine is further metabolized by the gut bac-
teria (intestinal uricolysis) [12]. UA is freely filtrated by
the kidneys, of the filtrated load (plasma concentration
of UA × glomerular filtration rate), 90 % is reabsorbed
and therefore, fractional excretion of UA is about 10 %
(7–12 %) [8, 12, 13]. Physiological functions of UA in-
clude but not limited to antioxidant property [9, 14],
defense against neurological diseases [14], autoimmune
diseases [9], and maintaining endothelial function [9].
High serum UA levels is a risk factor for type 2

diabetes mellitus (T2DM) as reported in different
population-based studies [15–18]. According to meta-
analyses of cohort studies, each 1 mg/dL (59.48 µmol/L)
increase in serum levels of UA increases the risk of
developing T2DM by about 6–17 % [19–21]. High UA
concentrations is associated with both insulin resistance
[16, 22] and β-cell dysfunction [23], two defects that are
at the core of pathophysiology of T2DM [24]. In healthy
subjects with normal serum UA concentrations, a posi-
tive correlation between serum UA levels and steady-
state plasma glucose (SSPG) concentrations, an index of
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insulin resistance, has been reported [25]. In addition,
renal clearance of UA is inversely associated with insulin
resistance [25]. A direct relationship between changes in
UA homeostasis and diabetes is still controversial [26,
27]. Using a multilocus Mendelian randomization
approach, it has been shown that for each 1 mg/dL
increase in circulating UA concentrations, there is an as-
sociated 20 % higher risk of diabetes, but the data does
not support causality [28]. However, this approach to
show potential causality has been criticized as it may
dissociate the physiological serum-intracellular relation-
ship [26]. In addition, acute euglycemic hyperinsulinemia
decreased fractional UA excretion by 26 % (from 6.1 ±
0.8 % to 4.5 ± 0.6 %) in healthy subjects, indicating that
insulin inhibits renal UA excretion [29] and that high
UA levels causes insulin resistance by affecting the insu-
lin signaling pathways [22]. Although a cause or effect
relationship between hyperuricemia and diabetes is still
a matter of debate, some experimental evidence indi-
cates that high UA levels can damage pancreatic β-cells;
this review aims to summarize the mechanisms under-
lying UA-induced β-cell damage.

Uptake of uric acid by pancreatic β-cells
Urate transporters include, (i) urate transporter 1/solute
carrier family 22, member 12 (URAT1/SLC22A12), (ii)
ATP-binding cassette subfamily G, member 2/breast
cancer resistance protein (ABCG2/BCRP), and (iii)
glucose transporter 9 (GLUT9/SLC2A9) [8]. Expression
of URAT1 in endocrine pancreas is controversial; both
low expression in pancreatic islets of rat [30] or no
expressions in pancreatic β-cell lines (INS-1 cells and
RIN-m5F cells) [31] have been reported. On the other
hand, both variants of GLUT9 (GLUT9a and GLUT9b)
are expressed in mouse insulinoma MIN6 cells, mouse
islets, and human islets [32]. In addition, GLUT9 expres-
sion in pancreatic β-cells is specific [32]. Although hu-
man GLUT9 is a urate transporter [7], this carrier also
participates in pancreatic β-cells function, as its knock-
down resulted in reduced cellular ATP levels that corre-
lated well with reductions in glucose-stimulated insulin
secretion (GSIS) in MIN6 and INS cells [32].

Uric acid and β-cell dysfunction
In 1948, Griffiths reported that feeding rabbits with a
diet that was deficient in methionine and cystin for 6–7
weeks decreased blood glutathione levels by about 40–
53 % [33]. Intraperitoneal injection of UA (1 g/kg) to
these rabbits increased blood glucose concentrations to
hyperglycemic levels, and therefore, it has been sug-
gested that UA exerts a diabetogenic action [33]. It has
also been shown that inhibition of uricase (urate oxi-
dase) in rats, along with UA feeding, increased serum
glucose and decreased serum insulin, and therefore,

decreased insulin:glucose ratio [34]. Uricase-knockout
mice have glucose intolerance and are more susceptible
to development of diabetes [23, 35]. In addition, in
hyperuricemic subjects, β-cells fail to compensate varia-
tions of insulin sensitivity [36].

Inhibitory effect of uric acid on glucose‐stimulated insulin
secretion
UA inhibits GSIS in isolated pancreatic rat islets [37, 38],
pancreatic mouse islets [39], and pancreatic β-cell lines
including Min6 cells [39, 40] and INS-1 cells [31, 38].
Inhibition varies between 30 and 80% depending on the
dose of UA, time of exposure, and different cell lines or
different animal studied. High UA concentrations de-
creases GSIS by about 30–42 % in Min6 cells [39, 40],
44 % in isolated mouse islets [39], and 80 % in isolated rat
islets [37]. Decreased GSIS in hyperuricemia may be due
to decreases in MafA protein expression [39] as MafA is a
key regulator of insulin secretion in β-cells [41].
The association between UA and insulin secretion is

quite complex. It has been shown that UA increases
GSIS in isolated perfused rat pancreas [42]. In addition,
a positive correlation between serum UA and total insu-
lin secretion has been reported using a hyperglycemic
clamp technique in type 2 diabetic patients without
hyperuricemia [43]. The effects of high UA levels on
basal insulin secretion are not consistent. Inhibition in
rat pancreatic islets [34, 37] and INS-1 cells [31] as well
as no effects in INS-1 cells [38], Min6 cells [40], and iso-
lated rat islets [38], have been reported.

Uric acid and β-cell death
In addition to decreased GSIS, other mechanisms are in-
volved in hyperuricemia-induced β-cell dysfunction,
development of glucose intolerance, and T2DM. These
include, increased inducible nitric oxide (NO) synthase
(iNOS)-derived NO production [39, 40], increased in-
flammation [30, 39], increased oxidative stress [30, 31,
38], and increased apoptosis and β-cell death [39, 40].
These underlying mechanisms can be categorized under
two major pathways that are activated by UA (Fig. 1): (1)
The nuclear factor kappa B (NF-κB)-iNOS-NO signaling
pathway, and (2) Reactive oxygen species (ROS)-AMP-
activated protein kinase (AMPK)-extracellular signal-
regulated kinase (ERK) signaling pathway.
In Min6 cells, UA activates the NF-κB signaling

pathway by phosphorylation and degradation of inhibitor
of κB (IκB) [39]; NF-κB increases iNOS expression and
therefore NO production, which causes a decrease in
GSIS and β-cell apoptosis [39]. In RIN-m5F cells, UA
increases the mRNA expression of inflammatory
mediators, including chemokine (C-X-C motif) ligand 1
(CXCL-1 or KC), monocyte chemoattractant protein-1
(MCP-1), and interleukin-6 (IL-6) [30].
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High levels of UA inhibit the growth of the pancreatic
β-cell lines (INS-1 and RIN-m5F) in a time- and dose-
dependent manner via the ROS-AMPK-ERK signaling
pathway [31]. High concentrations of UA also induce
oxidative stress in these cell lines [31]. Elevated ROS
increases phosphorylation of AMPK, which in turn
increases ERK phosphorylation [31], thus inhibiting the
cell growth [31]. Luteolin (a flavonoid), by suppressing
UA-activated NF-κB-iNOS-NO signaling pathway [44],
and resveratrol (a polyphenolic compound), by increas-
ing miR-126 expression [40], protect the pancreatic β-
cells from UA-induced dysfunction.

Uric acid and nitric oxide
It has been shown that the timing of serum UA peak (5:
08) and serum NO nadir (5:32) coincide in healthy men,
suggesting that their concentrations are physiologically
related [45]. In addition, in male rats, serum UA levels
are inversely correlated with serum NO metabolites,
with hyperuricemia decreasing serum NO metabolite
levels by about 40–50 % [46]. More details regarding
circadian variations of NO metabolites can be found
elsewhere [47].
UA increases iNOS expression in the β-cells, decreases

GSIS, and causes apoptosis [39]. However, the potential
role of NO in UA-induced β-cell dysfunction needs fur-
ther investigations. NO produced by different NOS iso-
forms (i.e. endothelial NOS, neural NOS, and iNOS)

exerts different effects on β-cell function [48], and in
most cases, the eNOS/nNOS-derived NO has physio-
logical relevance, whereas iNOS-derived NO in general
has pathological effects. In endothelial cells, high UA
levels decreases NO production [46, 49, 50], increases
arginase activity [49], and suppresses insulin-stimulated
phosphorylation of PKB (Akt) and eNOS [51]. In
addition, in human umbilical vein endothelial (HUVEC)
cells, a high concentration of UA causes mitochondrial
calcium overload probably by switching the direction of
mitochondrial sodium-calcium exchanger (NCXmito)
function from efflux to influx. This calcium overload
increases ROS production, which decreases eNOS
expression and NO release, causing endothelial dysfunc-
tion [52]. Because NCXmito is involved in insulin
secretion from β-cells [53], one can speculate that hyper-
uricemia can affect β-cell function via this pathway.
However, further studies are needed to confirm these
effects in the β-cells.

Uric acid‐lowering drugs in diabetes
Considering UA as a target for prevention/management
of diabetes is still premature and needs to be evaluated
in clinical trials. However, several lines of evidence indi-
cate a potential favorable outcome of these drugs in
diabetes. Zurapamic, an inhibitor of UA reabsorption in
the kidneys, protects INS-1 cells and rat islets against

Fig. 1 Mechanisms underlying uric acid (UA)-induced β-cell dysfunction. UA probably enters the β-cells via glucose transporter 9 (GLUT9).
Intracellular UA increases reactive oxygen species (ROS), which phosphorylates and activates AMP-activated protein kinase (AMPK) and then
extracellular signal-regulated kinase (ERK). Phosphorylated ERK causes β-cell apoptosis. UA also phosphorylates and degrades inhibitor of kappa B
(IκB) that permits the transcription factor nuclear factor kappa B (NF-κB) to enter the nucleus and increases expression of inducible nitric oxide
synthase (iNOS). NO overproduction decreases glucose-stimulated insulin secretion (GSIS) and causes β-cell apoptosis. CXCL-1, chemokine (C-X-C
motif) ligand 1; MCP-1, monocyte chemoattractant protein-1; IL-6, interleukin-6. Created with BioRender.com
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UA-induced damage by decreasing URAT1 expression
and oxidative stress [38]. Allopurinol, a competitive in-
hibitor of xanthine oxidase that decreases UA produc-
tion, protects isolated islets from neonatal rats against
the cytotoxic effects of styreptozotocin, probably via de-
creasing intracellular UA levels [54]. Benzbromarone, an
uricosuric drug, inhibits fatty acid-binding protein 4 and
improves glucose tolerance in type 2 diabetic db/db mice
[55]. Allopurinol improves endothelial function in hyper-
tensive type 2 diabetic patients [56]. In a retrospective
cohort, it has been shown that compared with non-
users, incidence of new-onset diabetes is lower in pa-
tients with gout being treated with benzbromarone [6].

Conclusions and perspectives
UA induces oxidative stress, the inflammatory response in
the β-cells, and decreases GSIS, causing β-cell apoptosis.
The threshold theory for the actions of UA on the β-cells
hypothesizes that the detrimental effects of UA occurs
above a given concentration. In support of this notion, it
has been shown that the inhibitory effect of UA on GSIS
in rat pancreatic islets has a sudden occurrence at a
threshold of 6.7 mg/dL (0.4 mM) [37]. Other hypothesis
of a potential association between UA and diabetes is that
the effects of hyperuricemia, are potentiated in presence
of other risk factors such as obesity or in genetically at risk
subjects [34]. In support of this concept, a positive associ-
ation has been found between serum UA levels and the
body mass index [57]. Also, an association between serum
UA levels and glucose homeostasis has been shown to be
mediated by adiposity [58].
Regarding the association between UA and β-cell func-

tion, the effects of UA on the genes and proteins that are
involved in insulin biosynthesis and secretion warrants
further investigations. In addition, most mechanistic find-
ings have been drawn from in vitro studies or from animal
studies. As always, it should be noted that extending re-
sults from animal studies to humans needs abundance of
caution, as UA metabolism is different between humans
and rodents [59]. Unlike humans, rodents have uricase,
and therefore, degrade UA more rapidly [59]. Thus, circu-
lating UA concentrations in humans is about 5–20 fold
higher than in most other mammals [12, 13].
All in all, hyperuricemia may potentially cause β-cell

dysfunction and predispose subjects to metabolic
disorders such as diabetes. If this holds true, then UA-
lowering drugs may be helpful in prevention/manage-
ment of diabetes, at least in subjects who are at risk for
both hyperuricemia and diabetes.
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