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Abstract

Background: We aimed to explore metabolite biomarkers that could be used to identify pre-diabetes and type 2
diabetes mellitus (T2DM) using systematic review and meta-analysis.

Methods: Four databases, the Cochrane Library, EMBASE, PubMed and Scopus were selected. A random effect
model and a fixed effect model were applied to the results of forest plot analyses to determine the standardized
mean difference (SMD) and 95% confidence interval (95% Cl) for each metabolite. The SMD for every metabolite
was then converted into an odds ratio to create an metabolite biomarker profile.

Results: Twenty-four independent studies reported data from 14,131 healthy individuals and 3499 patients with
T2DM, and 14 included studies reported 4844 healthy controls and a total of 2139 pre-diabetes patients. In the
serum and plasma of patients with T2DM, compared with the healthy participants, the concentrations of valine,
leucine, isoleucine, proline, tyrosine, lysine and glutamate were higher and that of glycine was lower. The
concentrations of isoleucine, alanine, proline, glutamate, palmitic acid, 2-aminoadipic acid and lysine were higher
and those of glycine, serine, and citrulline were lower in prediabetic patients. Metabolite biomarkers of T2DM and
pre-diabetes revealed that the levels of alanine, glutamate and palmitic acid (C16:0) were significantly different in
T2DM and pre-diabetes.

Conclusions: Quantified multiple metabolite biomarkers may reflect the different status of pre-diabetes and T2DM,
and could provide an important reference for clinical diagnosis and treatment of pre-diabetes and T2DM.

Keywords: Metabolite, Biomarker, Type 2 diabetes mellitus, Pre-diabetes; meta-analysis

Background

Type 2 diabetes mellitus (T2DM) is a highly prevalent
chronic disease that is associated with the development
of complications including diabetic retinopathy, kidney
disease and diabetic ketoacidosis [1, 2], which represent
serious threats to human health. Between 1980 and
2014, the number of adults with diabetes increased from
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108 million to 422 million [3], with T2DM accounting
for >90% of these cases [4]. Recent studies have shown
that diabetes has become one of the three major diseases
in the world with the increasing global prevalence rate
[5]. However, the symptoms of T2DM are not very obvi-
ous or only partially manifest in the early stages of the
disease. Therefore, it is particularly important to identify
an early diagnosis and effective treatment for diabetes.
In view of the high incidence of T2DM and its serious
consequences, the identification of novel diagnostic
markers for T2DM has become a subject of intense
research. The existing recognized diagnostic biomarkers of
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T2DM are blood glucose (including fasting blood glucose
and 2h glucose in oral glucose tolerance test) and
hemoglobin Alc. The metabolomic approach aims to
identify all the metabolites present in a biologic system,
whether cells, tissues or living organisms, to identify their
physiologic or pathologic effects [6]. The development of
metabolomics makes it possible for metabolites to be iden-
tified as biomarkers that may be useful for the diagnosis or
treatment of diabetes. For example, amino acids have been
proposed to be useful diagnostic biomarkers because the
metabolism of amino acids is considerably altered in pre-
diabetes and continue to vary over the course of T2DM
progression [7, 8]. In particular, tryptophan and branched
chain amino acids (BCAAs, including valine, leucine and
isoleucine) could represent potentially useful biomarkers of
T2DM because their serum concentrations are higher in
T2DM patients [9]. Additionally, plasma phospholipid such
as phosphatidylinositol and sphingomyelin were capable of
discriminating healthy individuals and T2DM patients [10].

It is critical to study of bring data on the appearance
of metabolic profile abnormalities before the occurrence
of pre-diabetes or T2DM, since this might predict and
allow prevent the disease progression to pre-diabetes or
T2DM. However, there is no current consensus regard-
ing the use of metabolites as diagnostic biomarkers of
T2DM, and part of the results were from clinical single-
center or insufficient consideration of mixed factors
such as different regions and different populations [11].
Therefore, it is a need for an effective and comprehen-
sive evaluation method for the use of metabolites as
diagnostic biomarkers of pre-diabetes or early T2DM.
The study from Guasch-Ferré et al. showed that several
amino acids were consistently associated with the risk of
T2DM [12]. Since then, a number of original studies
emerged. We hence undertook a systematic review and
meta-analysis of the proposed biomarkers of T2DM or
pre-diabetes revealed by published metabolomics and
constructed a profile of the metabolite biomarkers. The
purpose of this study is to explore metabolite biomarkers
integrating biomarkers from different studies through
systematic review and meta-analysis, which could pro-
vide further evidence for early diagnosis of pre-diabetes
and T2DM.

Methods

The systematic review was conducted according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [13].

Data sources and search strategy

The Cochrane Library, EMBASE, PubMed and Scopus
were searched for studies published from the earliest
available online to May 31, 2019. The search words were

“metabonomics”, “ metabolome”, “type 2

” o«

metabolomics”,
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» o« ” o«

diabetes”, “type 2 diabetics”, “type 2 diabetes mellitus”,
“insulin resistance”, “HOMA-IR”, “Impaired glucose tol-
erance”, “glucose intolerance”, “impaired fasting insulin”,
“impaired fasting glucose”, “prediabetic”, “pre-diabetes”
and “prediabetes” connected with OR and/or AND. To
ensure the relevance of the retrieved results, the “Title,
Abstract, Keywords” terms were used in the four

databases.

Study selection and inclusion criteria

The titles, abstracts and full texts of the articles were
evaluated after duplicate records were removed. Before
literature screening, the inclusion criteria for the publi-
cations obtained were formulated by two authors (Long
and Yang) as follows: (1) studies conducted in humans;
(2) the participants in the study were not gestational dia-
betes mellitus (GDM), type 1 diabetes mellitus (T1DM)
or subjects under 18 years of age; (3) the study included
a diabetic group or a prediabetic group and diagnosis
was performed according to the international diagnostic
guidelines [14]; (4) the article was not a review, confer-
ence abstract, editorial or note; (5) the biologic samples
analyzed were collected in the fasting state and (6) the
study was not conducted with dietary interventions and
(or) medications. The publications initially identified as
relevant were screened independently by two investiga-
tors (Long and Yang) using Endnote X7 (Thomson
ResearchSoft, Stanford, USA). If there was any disagree-
ment regarding the selection or inclusion of a study, this
was resolved by discussion or by involvement of a third
author (Yan). Studies of biomarkers of human pre-diabetes
and T2DM identified using metabonomic technology have
been included. The prediabetic category included subject
who met the above inclusion criteria and had impaired glu-
cose tolerance (IGT) or impaired fasting glucose (IFG) [15].

Quality assessment and data extraction

The Newcastle-Ottawa Scale (NOS) criteria [16] were
used to assess each publication to improve the overall
reliability of the extracted data. Three domains, the
comparability of cases and controls, selection of cases
and controls and exposure, were subdivided into eight
risk assessment items. The comparability domain was
awarded a maximum of two stars and other items were
awarded a maximum of one star, which indicated low,
moderate or high risk of bias, respectively. High and
low NOS scores reflect low and high risks of bias,
respectively.

Two investigators (Long and Yang) independently ex-
tracted appropriate information, including the names of
the authors and journal, year of publication, study de-
sign, population, sample sizes of the case and control
groups, the biologic samples obtained, analytic method,
determination method, covariates of statistical analysis
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in the study and the identity and concentrations of the
metabolites detected [reported as mean + standard devi-
ation (SD) or standard error (SE)] in the case and con-
trol groups. For the publications that did not provide
mean values, we extracted the hazard ratio or odds ratio
(OR) and its 95% confidence interval (95% CI). We also
extracted the median and interquartile range values from
two publications regarding pre-diabetes.

Statistical analysis

Forest plots for each metabolite for which mean + SD/SE
values were available were produced using Review
Manager 5.3 software. The raw data for each metabolite
were described in the forest plots, which reflected the
weighted contribution of each study. The heterogeneities
of the pooled means generated using the forest plots
were assessed using the I* statistic. For continuous vari-
ables, random effect models [17] were used to assess the
pooled means when I”>50%; otherwise, fixed effect
models were used. The outcomes were considered to be
statistically significant when P < 0.05.

To clearly illustrate the relationships between metabo-
lites, pre-diabetes and T2DM, the data provided in the
publications were reprocessed. We calculated estimated
means and SDs for each metabolite for which median
and interquartile ranges were reported in the publica-
tions [18, 19]. Because the published data were pre-
sented in different forms, using means + SD/SE or OR
value, the outcome indicators were unified to better
express the results. The mean + SD of each metabolite
provided in included studies was calculated as standard-
ized mean difference (SMD), and then the SMD was
converted to OR value using formula 1 [20, 21].

b4
In OR = SMD *—— 1
% (1

The mean and SD for ORs were obtained using SPSS
20.0 (IBM, Inc., Armonk, NY, USA) and converted outliers
were removed when their values were larger than the mean
plus five times SD [22]. The ORs were used to construct
scatter diagrams with Graphpad Prism 7.0 (GraphPad
Software, Inc., San Diego, USA), ensuring that there
were at least three sets of data for each metabolite.

Results

Study selection

A total of 3072 publications were identified from the
database, and 1549 relevant articles remained after the
removal of duplicate studies. A further 1408 publications
were excluded after evaluating their titles and abstracts.
These comprised 971 studies unrelated to the research
topics; 68 that were on inflammation or cardiovascular
diseases; 25 on polycystic ovary syndrome; 41 on non-
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alcoholic fatty liver disease; 156 were reviews, abstracts,
editorials, conference papers or notes and 147 were per-
formed on animals. Thus, 141 publications remained for
assessment of the full text. After excluding studies of
TIDM or GDM and qualitative research, 34 studies
remained for inclusion in the meta-analysis, 20 of which
were of T2DM, 10 were of pre-diabetes and 4 were of
both T2DM and pre-diabetes. The PRISMA flow dia-
gram for the meta-analysis is presented in Fig. 1.

Quality assessment

The scores of for the studies included in this meta-
analysis, generated using the NOS criteria, were shown
in Table S1 and Table S2. The maximum score, awarded
on the basis of eight risk assessment items [16], was nine
stars. Studies with a score of five stars or more were
regarded as of medium-to-high quality; otherwise, they
were to be categorized as poor-quality and excluded.
However, the lowest score was six stars. This implies
that all the included studies were of medium-to-high
quality, meaning that the data extracted were suitable
for inclusion in the meta-analysis.

Characteristics of the included studies

The characteristics of the included studies are shown in
Table 1. They comprised 24 independent studies report-
ing data from 14131 healthy participants and 3499
T2DM patients [10, 11, 22—43]. All these studies com-
pared T2DM patients with healthy participants. Four of
the studies were prospective [26, 33, 37, 41] and four lit-
eratures were cohort studies [30, 31, 35, 43]. There were
two cross-sectional studies [22, 40] and four follow-up
studies [32, 34, 36, 42], and the rest were case-control
studies. The results of most of the studies were pre-
sented as mean + SD/SE, but some were presented as
ORs.

As shown in Table 2, there were 14 studies of pre-
diabetes included in the meta-analysis, which contained
a total of 2139 prediabetic patients and 4844 healthy
controls [22, 24, 25, 29, 44-53]. Among these studies,
one was a cross-sectional study [22], two were follow-up
studies [29, 39], one was a longitudinal study [53], one
was a cohort study [50], and the remaining nine were
case-control studies. The participants in one study con-
ducted in Gothenburg were only female [29]. The results
of two of the studies were presented as medians and
interquartile ranges [51, 52]. Therefore, the mean and
SD of the metabolite concentrations mathematically
were estimated [18, 19].

Metabolites analyses

Characteristics of the metabolites studied

Metabolites including amino acids, lipids, saccharides
and others were analyzed in the 24 studies of T2DM.
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Fig. 1 PRISMA flow diagram for the included studies of type 2 diabetes mellitus and pre-diabetes. After the removal of duplicates from the same
database, 112 articles were found within the Cochrane Library, 984 within EMBASE, 689 within PubMed and 1287 within Scopus

The frequencies of analysis of each metabolite in the 24
studies were counted and metabolites quantified in three
or more studies are shown as a bubble diagram (Fig. 2a).
The four categories of metabolite are shown in pink,
green, blue and purple, respectively. The ordinal num-
bers on the bubbles represent different metabolites and
the size of each bubble is indicative of the number of
studies in which it was analyzed. Eighteen amino acids,
five lipids, three saccharides and three other metabolites
were assayed. Thus, the most studied metabolites
were amino acids, of which the four most commonly
analyzed were isoleucine, valine, glycine and leucine,
in 14, 13, 12 and 12 studies, respectively. Metabolites
studied on less than three articles were excluded, as
summarized in Table S3.

For pre-diabetes, the number of metabolites studied in
publications was significantly lower in the 14 studies in-
cluded than for T2DM, as shown in Fig. 2b. There were
14 amino acids, 2 lipids and 3 other metabolites. The
top three most commonly analyzed amino acids were
leucine, isoleucine and valine, which were studied on 11,
10 and 8 occasions, respectively. Metabolites studied on
less than three articles were excluded, as summarized in
Table S4.

Analysis of metabolites associated with T2DM

On the basis of data extracted with means + SD/SE for-
est plots for each metabolite were created using Review
Manager 5.3. Because the dimensions and units used in
the studies differed, SMDs were used for the forest plot
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Fig. 2 Bubble diagram of the publications on type 2 diabetes mellitus (a) and pre-diabetes (b)
A

outputs. For the T2DM studies, because the I* values for
glycine and tyrosine were 29 and 43%, respectively, with
a P value in the Q test >0.1, fixed effect models were
used to calculate combined effect sizes. Moreover, the I
values for valine, leucine, isoleucine, proline, glutamate,
lysine, phenylalanine, alanine, histidine and serine were >
90% (Table S5). That is, random effect models were
used for these metabolites [17, 54].

As shown in Fig. 3, the concentrations of BCAAs and
aromatic amino acids (AAAs) were significantly higher in

the serum and plasma of T2DM patients than in control
participants. The SMDs of valine (0.91 [0.59, 1.23], P<
0.00001), leucine (0.93 [0.57, 1.29], P < 0.00001), isoleucine
(0.93 [0.60, 1.27], P <0.00001), phenylalanine (0.86 [0.42,
1.31], P=0.0001) and tyrosine (0.56 [0.37, 0.75], P<
0.00001) were statistically significant. Additionally, the con-
centration of glycine (- 042 [-0.49, -0.34], P<0.00001)
was lower and those of proline (0.50 [0.18, 0.82], P = 0.002),
glutamate (0.63 [0.19, 1.07], P=0.005) and lysine (0.84
[0.28, 1.40], P=0.003) were higher, in the serum and



Long et al. BMC Endocrine Disorders (2020) 20:174 Page 11 of 17
A. Valine
Cases Control Std. Mean Difference Std. Mean Difference
_StudyorSubgroup ~~~ Mean SD Total Mean SD Total Weight IV. Random.95% Cl 1V, Random. 95% ClI
Abu Bakar et al. 2017 382 0.67 37 213 0.88 32 10.9% 2.16 [1.56, 2.76] -
Andersson-Hall et al. 2018 109.5 216 44 100 19.2 137 14.6% 0.48[0.13, 0.82] -
Gogna et al. 2015 169 0.32 165 137 055 128 16.0% 0.73[0.49, 0.97] -
Kujala et al. 2016 196 45 126 179 29 214 16.2% 0.47 [0.25, 0.70] =
Okekunle et al. 2017 328.15 83.18 50 283.06 43.41 50 13.8% 0.67 [0.27, 1.08] -
Palmer et al. 2015 232 36 76 201 36 70 14.7% 0.86 [0.52, 1.20] =
Wolak-Dinsmore et al. 2018 278 44 67 219 41 56 13.9% 1.37[0.98, 1.77] =
Total (95% Cl) 565 687 100.0% 0.91 [0.59, 1.23] S 4
Heterogeneity: Tau? = 0.15; Chi? = 39.47, df = 6 (P < 0.00001); I> = 85% 2 1 5 1 2
Test for overall effect: Z = 5.53 (P < 0.00001) Favours [experimental] Favours [control]
B. Leucine
Cases Control Std. Mean Difference Std. Mean Difference
_StudyorSubgroup ~~~ Mean SD Total Mean SD Total Weight IV. Random. 95% Cl 1IV. Random. 95% ClI
Abu Bakar et al. 2017 212 0.4 37 114 0.36 32 11.0% 2.54[1.89, 3.18] -
Andersson-Hall et al. 2018 1134 227 44 100 182 137 14.6% 0.69 [0.34, 1.04] =
Gogna et al. 2015 147 041 165 122 046 128 158% 0.58 [0.34, 0.81] =
Kujala et al. 2016 87 22 126 78 12 214 15.9% 0.55[0.32,0.77] o
Okekunle et al. 2017 88.04 20.57 50 60.19 14.66 50 13.4% 1.55[1.10, 2.00] -
Palmer et al. 2015 155 30 76 140 30 70 14.8% 0.50[0.17, 0.83] =
Wolak-Dinsmore et al. 2018 162 37 67 139 37 56 14.4% 0.62 [0.25, 0.98] =
Total (95% ClI) 565 687 100.0% 0.93 [0.57, 1.29] >
Heterogeneity: Tau? = 0.20; Chi* = 49.47, df = 6 (P < 0.00001); I2 = 88% B B2 5 : %
Test for overall effect: Z = 5.05 (P < 0.00001) Favours [experimental] Favours [control]
C. Isoleucine
Cases Control Std. Mean Difference Std. Mean Difference
_StudyorSubgroup ~~ Mean SD Total Mean SD Total Weight IV.Random. 95% Cl 1V, Random. 95% ClI
Abu Bakar et al. 2017 127 0.21 37 063 0.32 32 10.8% 2.37[1.75, 3.00] "
Andersson-Hall et al. 2018 115.7 285 44 100 221 137 14.6% 0.66 [0.31, 1.00] "
Gogna et al. 2015 198 042 165 159 041 128 15.9% 0.94 [0.69, 1.18] .
Kujala et al. 2016 59 15 126 53 10 214 16.1% 0.50[0.27,0.72] =2
Okekunle et al. 2017 69.71 17.23 50 50.81 10.33 50 13.4% 1.32[0.89, 1.75] =
Palmer et al. 2015 155 30 76 140 30 70 14.8% 0.50[0.17, 0.83] -
Wolak-Dinsmore et al. 2018 59 25 67 43 19 56 14.4% 0.71[0.34, 1.07] 2
Total (95% Cl) 565 687 100.0% 0.93 [0.60, 1.27] <
Heterogeneity: Tau? = 0.17; Chi? = 42.24, df = 6 (P < 0.00001); I = 86% 4’1 2 o 2 j‘
Test for overall effect: Z = 5.48 (P < 0.00001) Favours [experimental] Favours [control]
D. Phenylalanine
Cases Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight 1V, Random, 95% Cl V. % Cl
Abu Bakar et al. 2017 1.85 047 37 1.02 021 32 13.9% 2.20[1.59, 2.81] -
Andersson-Hall etal. 2018 117.1  49.1 44 100 454 137 16.8% 0.37[0.03, 0.71] -
Floegel et al. 2013 61 129 800 564 12 2282 18.6% 0.38 [0.29, 0.46] -
Gogna et al. 2015 195 027 165 154 036 128 17.6% 1.31[1.05, 1.56] -
Okekunle et al. 2017 64.07 20.98 50 50.32 12.08 50 16.1% 0.80 [0.39, 1.20] -
Palmer et al. 2015 72 12 76 67 13 70 17.0% 0.40[0.07, 0.73] -
Total (95% CI) 1172 2699 100.0% 0.86 [0.42, 1.31] -
Heterogeneity: Tau? = 0.27; Chi? = 81.05, df = 5 (P < 0.00001); I> = 94% _:2 _:1 6 ,i é
Test for overall effect: Z = 3.83 (P = 0.0001) Favours [experimental] Favours [control]
E. Tyrosine
Cases Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV. Fixed, 95% CI IV. Fixed. 95% CI
Abu Bakar et al. 2017 0.93 0.2 37 067 0.4 32 14.7% 0.83[0.34, 1.33] s
Andersson-Hall et al. 2018  111.6  26.7 44 100 251 137 30.5% 0.45[0.11, 0.80] =
Okekunle et al. 2017 54.34 15.64 50 41.26 14.33 50 21.3% 0.87 [0.45, 1.28] =
Palmer et al. 2015 78 17 76 72 17 70 33.5% 0.35[0.02, 0.68] =
Total (95% CI) 207 289 100.0% 0.56 [0.37, 0.75] <&
Heterogeneity: Chi? = 5.22, df = 3 (P = 0.16); I2 = 43% 5 gt 5 : >
Test for overall effect: Z = 5.82 (P < 0.00001) Favours [experimental] Favours [control]
Fig. 3 Pooled analysis of valine (a), leucine (b), isoleucine (c), phenylalanine (d) and tyrosine (e) in the serum or plasma of type 2 diabetes
mellitus patients and control participants
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-
A. Valine
Experimental Control Std. Mean Difference Std. Mean Difference
_StudyorSubgroup _ Mean _ SD Total Mean SD Total Weight IV. Random.95% Cl 1V, 95% Cl
Andersson-Hall et al. 2018 108.2 151 43 100 192 137 11.7% 0.45[0.10, 0.79] ="
Butte et al. 2015 105 013 450 095 0.14 353 122% 0.74[0.60, 0.89] -
Gao et al. 2016 291.3 434 30 297.8 50.1 20 10.9% -0.14 [-0.71, 0.43] o
Kim et al. 2010 334 134 30 271 1.04 30 8.2% 5.18 [4.10, 6.27] -
Kujala et al. 2016 185 29 252 179 29 214 121% 0.21[0.02, 0.39] ™
Lee etal.(A) 2014 2136 313 64 1888 293 45 11.6% 0.81[0.41, 1.20] -
Lee et al.(B) 2014 2104 321 46 1933 26.8 45 11.5% 0.57 [0.15, 0.99] i
Mastrangelo et al. 2016 145.5 4.7 50 125.9 4.4 50 10.1% 4.27 [3.55, 4.99] -
Newgard et al. 2009 28821 6328 74 231.95 4008 67 11.7% 1.05[0.69, 1.40] =
Total (95% CI) 1039 961 100.0% 1.29 [0.75, 1.83] <>

itv: Tau? = 0.62- Chi2 = = . |2 = 969, - - 4
Heterogeneity: Tau? = 0.62; Chi? = 202.78, df = 8 (P < 0.00001); I* = 96% 4 2 0 2 4

Test for overall effect: Favours [experimental]  Favours [control]

=4.68 (P < 0.00001)

B. Leucine
Experimental Control Std. Mean Difference Std. Mean Difference
_ Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random. 95% Cl V. 95% CI
Andersson-Hall et al. 2018 1112 136 43 100 182 137 10.5% 0.65[0.30, 1.00] -
Butte et al. 2015 1.04 0.14 450 096 0.16 353 11.1% 0.54 [0.39, 0.68] =
Gao et al. 2016 2166 326 30 189.5 37.6 20 9.5% 0.77[0.18, 1.36] -
Kim et al. 2010 1196 409 30 1045 389 30 81% 3.73[2.88, 4.59] =
Kujala et al. 2016 80 14 252 78 12 214 11.0% 0.15[-0.03, 0.33] ™
Lee et al.(A) 2014 1456 30.2 64 1281 213 45  10.4% 0.65[0.25, 1.04] =
Lee etal.(B) 2014 1446 281 46 1317 191 45 10.3% 0.53[0.11, 0.95] -
Mastrangelo et al. 2016 953 29 50 837 25 50 88% 4.25[3.53,4.97] —=
Newgard et al. 2009 173.88 38.26 74 152.92 33.41 67 10.6% 0.58 [0.24, 0.92] -
Zeng et al. 2010 0.037 0.034 34 0.039 0022 24 9.8% -0.07 [-0.59, 0.46] -1
Total (95% ClI) 1073 985 100.0% 1.07 [0.61, 1.54] >

Heterogeneity: Tau? =
Test for overall effect: Z = 4.52 (P < 0.00001)

- Chi2 = = - |2 = 959 + +
.50; Chi? = 179.96, df = 9 (P < 0.00001); I* = 95% 4 2 0 2 4

Favours [experimental] Favours [control]

C. Isoleucine

Experimental Control Std. Mean Difference Std. Mean Difference

_Study or Mean SD Total Mean SD Total Weight V, Fixed, 95% CI IV, Fixed, 95% Cl

Andersson-Hall et al. 2018 109 19 43 100 221 137 6.9% 0.42[0.07, 0.76]

Butte et al. 2015 1.04 015 450 095 0.16 353 40.6% 0.58[0.44, 0.72] -

Gao et al. 2016 925 452 30 877 482 20 26% 0.10 [-0.46, 0.67] - 1

Kujala et al. 2016 55 1 252 53 10 214 24.6% 0.19[0.01, 0.37] &

Lee etal.(A) 2014 757 179 64 654 115 45 54% 0.66 [0.26, 1.05] -

Lee etal.(B) 2014 791 182 46 712 122 45 47% 0.50 [0.09, 0.92] -

Mastrangelo et al. 2016 185.17 35.11 50 158.28 51.14 50 5.1% 0.61[0.21, 1.01] -

Newgard et al. 2009 173.88 38.26 74 152.98 33.41 67 72% 0.58 [0.24, 0.91] -

Zeng et al. 2010 0.02 0.021 34 0.015 0.009 24 3.0% 0.29 [-0.24, 0.81] ]

Total (95% Cl) 1043 955 100.0% 0.45 [0.36, 0.54] *

Heterogeneity: Chi? = 15.26, df = 8 (P = 0.05); I> = 48% ! ! + x

e 2 -1 0 1 2
Test for overall effect: Z = 9.83 (P < 0.00001) Favours [experimental] Favours [control]

D. Phenylalanine

Experimental Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean  SD Total Mean  SD Total Weight 1V, Random,95% Cl IV. 95% Cl
Andersson-Hall etal. 2018 121.8 43.8 43 100 454 137 14.7% 0.48 [0.14, 0.83] -
Butte et al. 2015 104 013 450 095 0.12 353 15.6% 0.72[0.57, 0.86] bl
Lee etal.(A) 2014 64.6 7 64 603 101 45 14.5% 0.51[0.12, 0.89] -
Lee et al.(B) 2014 63 6.9 46 61.2 8.7 45 14.3% 0.23[-0.18, 0.64] N
Mastrangelo et al. 2016 85.7 24 50 778 2 50 12.7% 3.55[2.91,4.19] -
Newgard et al. 2009 726 9.53 74 61.85 10.38 67 14.7% 1.08 [0.72, 1.43] -
Zeng et al. 2010 0.019 0.016 34 0.017 0.01 24 135% 0.14[-0.38, 0.67] T
Total (95% Cl) 761 721 100.0% 0.92 [0.40, 1.43] >

Heterogeneity: Tau? = 0.43; Chi* = 92.75, df = 6 (P < 0.00001); I* = 94%

Test for overall effect: Z = 3.51 (P = 0.0004) -4 -2 0 2 4

Favours [experimental] Favours [control]

E. Tyrosine

Experimental Control Std. Mean Difference Std. Mean Difference

dy o bgroup an D a a ota eig Random. 95% Cl IV. Rand 95% Cl
Andersson-Hall etal. 2018 109.6  26.9 43 100 251 137 13.5% 0.37[0.03, 0.72] ™
Butte et al. 2015 1.1 018 450 09 015 353 14.2% 1.19[1.04, 1.34] -
Kim et al. 2010 578 213 30 442 136 30 6.7% 7.511[6.03, 8.99] -
Lee etal.(A) 2014 724 103 64 637 129 45 13.3% 0.76 [0.36, 1.15] el
Lee et al.(B) 2014 728 14 46 662 109 45 13.1% 0.52[0.10, 0.94] ™
Mastrangelo et al. 2016 88.94 29.77 50 74.02 25.19 50 13.2% 0.54[0.14, 0.94] Bl
Newgard et al. 2009 79.32 16.26 74 6569 1273 67 13.5% 0.92[0.57, 1.27] -
Zeng et al. 2010 0.013 0.009 34 0.012 0.007 24 12.5% 0.12[-0.40, 0.64] 1=
Total (95% CI) 791 751 100.0% 1.10 [0.58, 1.62] <&

Heterogeneity: Tau? = 0.50; Chi* = 114.96, df = 7 (P < 0.00001); I> = 94% ’

o 4 2 0 2 4
Test for overall effect: 2= 4.12 (P < 0.0001) Favours [experimental] Favours [control]

Fig. 4 Pooled analysis of valine (a), leucine (b), isoleucine (c), phenylalanine (d) and tyrosine (e) in serum and plasma of pre-diabetes and control
groups. Studies with several populations comparing patients with pre-diabetes and controls are described by the author name followed by A or
B to indicate, for example, subdivision according to sex




Long et al. BMC Endocrine Disorders (2020) 20:174

plasma of patients with T2DM than in control participants
(Fig. S1). Thus, valine, leucine, isoleucine, tyrosine, glycine,
proline, glutamate and lysine could be considered as bio-
markers of T2DM according to their forest plots and the
first five of these are likely to be most useful, given the asso-
ciated P values.

Analysis of metabolites associated with pre-diabetes
For the prediabetic studies, the I values for isoleucine, pro-
line, citrulline, 2-aminoadipic acid and lysine were less than
50%, with the P value for the Q test >0.1 and therefore
fixed effect models were used to calculate the combined
effect sizes. The I* values for glycine, alanine, glutamate,
serine and palmitic acid (C16:0), leucine, valine, tyrosine,
phenylalanine, propionylcarnitine (C3), carnitine (CO0),
asparagine, tryptophan and myristate (C14:0) were >50%
(Table S6). Therefore, random effect models were used.

As shown in Fig. 4 and Table S6, the concentrations of
valine (1.29 [0.75, 1.83], P <0.00001), leucine (1.07 [0.61,
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1.54], P<0.00001), isoleucine (0.45 [0.36, 0.54], P<
0.00001), phenylalanine (0.92 [0.40, 1.43], P =0.0004) and
tyrosine (1.10 [0.58, 1.62], P<0.0001) were significantly
higher in the serum and plasma of prediabetic patients
than in control participants. The concentration of glycine
(-0.76 [- 1.00, - 0.51], P < 0.00001) was lower, while those
of proline (0.41 [0.23, 0.59], P <0.00001), glutamate (0.61
[0.20, 1.02], P=0.004) and lysine (0.36 [0.24, 0.49], P<
0.00001) were higher in the serum or plasma of predia-
betic patients than in control participants (Fig. S2). Fur-
thermore, there were statistically significant differences in
the concentrations of serine, citrulline, 2-aminoadipic acid
and palmitic acid (C16:0) in the serum or plasma between
prediabetic and healthy participants, as shown in Fig. S3
and Table S6. The concentrations of alanine (0.57 [0.30,
0.83], P<0.0001), 2-aminoadipic acid (0.69 [0.43, 0.95],
P <0.00001), propionylcarnitine (C3) (1.65 [0.83, 2.48],
P <0.0001) and palmitic acid (C16:0) (0.85 [0.44, 1.26],
P <0.0001) in the serum or plasma of prediabetic patients

A 147

T2DM

OR

Prediabetes

Fig. 5 Metabolite profiling diagrams. a Metabolite profiling diagrams for metabolites in type 2 diabetes mellitus patients. b Metabolite profiling
diagrams for metabolites in pre-diabetic patients. Abbreviations: OR, odds ratio; LPC, lysophosphatidylcholine; L-GPC, linoleoyl-glycerophospho-
choline; a-HIB, a-hydroxyisobutyric acid; B-HB, B-hydroxybutyric acid; 4-MOP, 4-methyl-2-oxopentanoic acid; 3-MOP, 3-methyl-2-oxopentanoic
acid; 3-MOB, 3-methyl-2-oxobutyric acid; a-KB, ketobutyric acid; B-HIB, B-hydroxyisobutyric acid
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were higher than those of healthy participants, while con-
centrations of serine (- 0.37 [- 0.70, — 0.04], P=0.03) and
citrulline (- 0.37 [-0.49, - 0.25], P < 0.00001) were lower.
This implies that isoleucine, glycine, proline, glutamate,
lysine, serine, citrulline, 2-aminoadipic acid and palmitic
acid (C16:0) may represent biomarkers of prediabetes.

Integrative analysis of the metabolite biomarkers

Forest plots were only constructed for metabolites analyzed
in at least three studies included in the meta-analysis, but
these may not represent the most widely applicable assays.
For example, IFG and IGT were only assessed in predia-
betic patients in one study [44], but more than three
datasets for each metabolite can be more reliably integrated
to reflect the features of pre-diabetes. Therefore, we con-
ducted integrative profiling to scientifically combine all the
data provided in the included studies.

The ORs for each metabolite provided in the included
publications were analyzed to reflect the characteristics of
the disease biomarkers, excluding publications containing
outliers. As shown in Fig. 5a, 23 metabolites of those ana-
lyzed in T2DM patients remained after those with outliers
had been excluded. In the scatter diagram, the dots
represent the ORs and the colors represent the types
of metabolite. The mean ORs for the isoleucine (OR =
2.19), leucine (OR =1.95), valine (OR =1.91), phenyl-
alanine (OR = 1.88), lysine (OR = 2.43), arginine (OR =
0.83), methionine (OR=1.14), glycine (OR=0.88),
tyrosine (OR =1.99), serine (OR = 0.83), proline (OR =
1.74), alanine (OR =1.21), glutamate (OR =1.81), cit-
rulline (OR=0.69), histidine (OR =1.44), glutamine
(OR =0.46) and ornithine (OR =0.94) were significant.
The mean ORs for lysophosphatidylcholine (LPC C18:2)
and palmitic acid (C16:0) were 0.68 and 1.26, respectively.
The mean ORs for glucose and mannose were 5.17 and
4.65, respectively. And the mean ORs for lactate and gly-
cerol were 2.51 and 2.32, respectively. The mean ORs of
all the metabolites were demonstrated the characteristic
metabolic profile of T2DM.

In the pre-diabetes studies, as shown in Fig. 5b, 32 me-
tabolites were analyzed, comprising 13 amino acids, 5
lipids and 14 other metabolites. The mean ORs of isoleu-
cine (OR =1.92), leucine (OR =2.03), valine (OR = 2.24),
phenylalanine (OR =2.15), lysine (OR =1.84), asparagine
(OR=042), glycine (OR=0.55), tyrosine (OR=2.57),
serine (OR=0.79), proline (OR =2.05), alanine (OR =
3.23), glutamate (OR =5.01), citrulline (OR =0.56), LPC
(C18:2) (OR=0.73), palmitic acid (C16:0) (OR=5.99),
oleic acid (OR=1.52), linoleoyl-glycerophospho-choline
(OR = 0.62), myristic acid (C14:0) (OR = 1.68), hydroxyiso-
valeroyl carnitine (OR=1.18), propionylcarnitine (C3)
(OR =241), carnitine (C0) (OR=3.12), 2-aminoadipic
acid (OR = 2.21), a-hydroxyisobutyric acid (OR = 2.40), B-
hydroxybutyric acid (OR = 1.38), 4-methyl-2-oxopentanoic
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acid (OR =1.57), 3-methyl-2-oxopentanoic acid (OR =
1.49), 3-methyl-2-oxobutyric acid (OR = 1.57), ketobutyric
acid (OR=1.90), 3-hydroxyisobutyric acid (OR =1.62),
vitamin B5 (OR =1.27), a-ketoglutarate (OR =1.08) and
trigonelline (OR =0.85) were significant. Unlike T2DM,
no saccharides were analyzed. The mean ORs for all the
metabolites were constructed to indicate the characteris-
tics of the metabolic profile for pre-diabetes.

From Fig. 5, obviously, alanine, citrulline, glutamate,
glycine, isoleucine, leucine, lysine, phenylalanine, pro-
line, serine, tyrosine and valine amino acids, LPC (C18:
2) and palmitic acid (C16:0) were statistically similar
between T2DM/pre-diabetes patients and healthy con-
trols. The obvious difference in pre-diabetes and T2DM
indicates that these disease stages are associated with
distinct and quantified metabolic biomarker profiles. In
particular, the metabolic biomarkers alanine, glutamate
and palmitic acid (C16:0) were significantly different in
pre-diabetes and T2DM, which suggests that quantified
concentrations of this three metabolites are potential
for use as integrative biomarkers for the differentiation
of pre-diabetes and T2DM.

Discussion

The use of a single biomarker to diagnose a disease lacks
specificity because multiple disease processes are likely
to affect its concentration. Additionally, the main disad-
vantage of the simple addition of other biomarkers is
that their discriminative ability typically overlaps, also
limiting the use of this approach [55]. Some studies
involving diet were excluded, because the higher intake
of metabolites might falsely raise their levels in metabo-
lomics [56]. The use of single biomarkers is limited by
the effects of external factors, such as diet. Furthermore,
risk models containing biomarkers derived from the
pathways directly affected by the disease itself may not
demonstrate high predictive value. We believe that the
integration of data regarding a number of biomarkers
more accurately predict the occurrence of pre-diabetes/
T2DM, and map the patient’s current state in a precise
manner, which might prevent the further development
of T2DM, diabetic macro- and microphaties.

The present meta-analysis, which included 34 independ-
ent studies reported data from 14,515 healthy participants,
3499 patients of T2DM and 2139 with pre-diabetes, was
performed based on both original OR and OR converted
from SMD value. SMD could reflect the original data of
each study, and reduce the deviations caused by different
methods in included studies. Therefore, the comparability
and reliability of meta-analysis are acceptable [21]. There
were 23 metabolites concerning T2DM and 32 metabo-
lites concerning pre-diabetes based on included studies.
From Fig. 5, obviously, 12 amino acids, LPC (C18:2) and
palmitic acid (C16:0) were statistically similar between
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T2DM/pre-diabetes patients and healthy controls. Metab-
olite biomarkers of T2DM and pre-diabetes revealed that
the levels of alanine, glutamate and palmitic acid (C16:0)
are significantly different in T2DM and pre-diabetes.
These findings could reflect the different status of pre-
diabetes and T2DM, and could provide an important ref-
erence for clinical diagnosis and treatment of pre-diabetes
and early T2DM, which might prevent the further devel-
opment of T2DM and reduce the incidence of diabetes
complications.

Integrated profiling reflects a set of biomarkers in the
context of a network, instead of considering only single
or isolated biomarkers. As shown in Fig. S4, the patho-
genesis of T2DM is complex and involves many signal-
ing pathways, which has not yet been fully elucidated.
Integration hence of the pre-existing metabolite bio-
markers may be useful for the prevention and diagnosis
of T2DM and pre-diabetes. This method of analysis is
suitable for the integration of a number of types of data;
for instance, both amino acid biomarkers, belonging to
centralized data with strong regularity and a wide range
of metabolic biomarkers, belonging to dispersive and
isolated data with irregularity. The goals of most studies
is improving the diagnosis rate of pre-diabetes and early
T2DM, which could reduce the incidence of T2DM and
diabetes complications through early intervention treat-
ment. Integrative profiling of metabolic biomarkers
should be able to provide reliable references for the se-
lection of biomarkers suitable for the prediction and
diagnosis of T2DM and pre-diabetes in the future. It is
more potential clinical valuable for high incidence of
diabetes (such as China and India) to explore metabolite
biomarkers profile for identification and diagnosis of
pre-diabetes and T2DM [3]. For the abnormal amino
acid and lipid profiles (low levels of metabolites such as
glycine, serine and LPC (18:2)), is it possible to increase
their levels through external intake to reduce the inci-
dence of pre-diabetes or T2DM? It is worthwhile to de-
sign experiments to verify this conjecture at the animal
level in future. In further research, conducting clinical,
multi-center cohort or prospective observation trials are
necessary and important research works.

Although it has shown that quantified metabolic bio-
markers could reflect T2DM and pre-diabetes, there
were some limitations to the approach used. First, some
relevant studies may not have been retrieved from the
databases using the search terms described. Second,
there were fewer studies of some of the metabolites and
there is likely to be a publication bias in favor of positive
findings, which may have introduced bias into our ana-
lysis. Third, all the information regarding the samples and
data collected were derived from the included studies, so
the potential confounding factors present in these studies,
such as ethnicity, region, education and physical health of
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the participants might have affected the study results.
Although the accuracy of the meta-analysis results was af-
fected by the original research data form included studies,
the conclusions of this study were obtained from the
meta-analysis conducted in strict compliance with the
included criteria and the PRISMA guidelines.

Conclusions
Quantified multiple metabolite biomarkers are useful
strategy to differentiate pre-diabetes and T2DM, and we
believe that it has potential clinical value for the diagno-
sis of T2DM.
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