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Abstract

Oxytocin (OT) emerges as a drug for the treatment of diabetes and obesity. The entire OT system is synthesized in the
rat and human heart. The direct myocardial infusion with OT into an ischemic or failing heart has the potential to elicit a
variety of cardioprotective effects. OT treatment attenuates cardiomyocyte (CMs) death induced by ischemia-reperfusion
by activating pro-survival pathways within injured CMs in vivo and in isolated cells. OT treatment reduces cardiac
apoptosis, fibrosis, and hypertrophy. The OT/OT receptor (OTR) system is downregulated in the db/db mouse model of
type 2 diabetes which develops genetic diabetic cardiomyopathy (DC) similar to human disease. We have shown that
chronic OT treatment prevents the development of DC in the db/db mouse. In addition, OT stimulates glucose uptake
in both cardiac stem cells and CMs, and increases cell resistance to diabetic conditions. OT may help replace lost CMs
by stimulating the in situ differentiation of cardiac stem cells into functional mature CMs. Lastly, adult stem cells
amenable for transplantation such as MSCs could be preconditioned with OT ex vivo and implanted into the
injured heart to aid in tissue regeneration through direct differentiation, secretion of protective and cardiomyogenic

factors and/or their fusion with injured CMs.
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Background

OT was the first peptide hormone to have its structure
determined and the first to be chemically synthesized in
a biologically active form [1]. OT acts as a brain neuro-
modulator and central nervous system (CNS) regulator
functionally different than the second neurophyseal hor-
mone, arginine-vasopressin (AVP). Both hormones are
mainly produced in magnocellular cells of hypothalamic
parvocellular paraventricular nucleus and supraoptic nu-
cleus neurons [2]. OT is released locally in the brain and
systemically into the circulation. OT and AVP play an
important role in many physiological functions through
GPCR (G-protein-coupled-receptor) signal transduction.
Like AVP, OT is a disulfide-bridge cyclic nonapeptide
but contains neutral amino-acids at position 3 and 8
(isoleucine and leucine, respectively). The difference in
polarity of these residues, compared to AVD, is believed
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to enable OT to interact predominantly with its specific
receptor subtype [3]. In humans and other mammalian
species, OT and AVP target the OTR (OT receptor) and
the three vasopressin receptors V1aR, VIbR and V2R.
Whereas AVP binds to the OTR and AVP receptors with
almost identical affinity, OT has a highest affinity for
OTR and lower for AVP receptors. Study on transfected
cell lines [4] revealed that OT had a high affinity for the
OTR (K(i) expressed as mean = 6.8 nmol/L) and bound, to
some extent, to the AVP V1aR (K(i) = 34.9 nmol/L). AVP
displayed higher affinities for AVP V1a, V1b and V2 re-
ceptors (K(i) = 1.4, 0.8 and 4.2 nmol/L, respectively) than
for the OTR (K(i) = 48 nmol/L).

A single OTR can activate multiple second-messenger
pathways and the OTR is found in many tissues, includ-
ing the kidney, ovary, testis, pituitary, heart, vascular
endothelium, adipocytes, myoblasts pancreatic islets and
regulatory T cells [3]. The heart, especially the right
atrium is also one of the main sources of OT [5].

Gene deletion showed that OT is essential for milk se-
cretion and regulates maternal behavior, social recogni-
tion, sexuality, memory, pair bond formation [6], and
obesity [7-14]. OTR ligands with high specificity over the
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related AVP receptors are currently available and several
patents propose their therapeutic utility in numerous ap-
plications, e.g. increasing lactation, acting against preterm
labor, breast cancer, modulating immune system, osteo-
porosis, and autism-related disorders (reviewed in [15]).
Potential novel application of OT include treatment of
autism, schizophrenia, depression, social anxiety, and
Prader-Willi syndrome [16]. Because OT reduces gly-
cemia [13], the potential indications for clinical use include
diabetes (patents: US20140066373, D. Cai; WO 2011/
14505, F. Rohner-Jeanrenaud and N. Deblon), prediabetes,
and insulin resistance. In animal studies, OT has been
shown to reduce food intake and produce fat weight
loss and OT antagonist reverses this effect as recently
reviewed [12, 17, 18].

Oxytocin signaling in the heart

OT is recognized as a cardiovascular hormone with
cardio-protective effects [19]. OT and OTR are synthesized
in the human and rat heart [20, 21] and OT exerts cardio-
protection either directly or via stimulation of mediators
such as the natriuretic peptides (NPs) [20, 22] and nitric
oxide (NO) [23]. Both these mediators activate the cyclic
guanosine 3’,5’-monophosphate/cGMP-dependent pro-
tein kinase (cGMP/PKQ), following activation of soluble
or particulate guanylate cyclases (sGC, pGS), respectively.
The cardiovascular effects of OT include natriuresis and
lowering of blood pressure, negative cardiac inotropy and
chronotropy, NO-induced vasodilatation and endothelial
cell growth. The cardiac OT system has been shown to
regulate both cardiac cell survival pathways and provide
protection against ischemic heart injury [24, 25]. It has
been recently suggested that therapies enhancing the car-
diac OT/OTR system prevent CMs apoptosis following an
ischemia-reperfusion (IR) insult [26]. CM death can be
prevented or attenuated by conditioning of the heart, with
OT treatment initiated either before or after an ischemic
insult [27]. Apart from PKG activation, NO has also been
proposed as a cytoprotective factor due to the attenuation
of reactive oxygen species (ROS) production during reper-
fusion caused by the reversible inhibition of mitochondrial
respiratory complex I by S-nitrosation [28]. Proposed OT
signaling in CM is illustrated on Fig. 1. ANP is an estab-
lished cardioprotective peptide because of its ability to in-
hibit the release of renin and sympathetic nerve activity,
and the synthesis of aldosterone. ANP also ameliorates
endothelial function and decreases fibrosis, inflammation
and apoptosis in myocytes which are associated with LV re-
modeling [29]. Furthermore, ANP activates the reperfusion
injury salvage kinase (RISK), which has been shown to me-
diate ischemic preconditioning and postconditioning. OT
in physiological concentrations (~10 nM) prevented the de-
velopment of newborn and adult rat CMs hypertrophy
exerted by ET-1 and Ang-II by several mediators such as
PI3K/ERK1/2/ANP-cGMP/NFAT signalling [30].

Page 2 of 9

OT and cardioprotection

The role of OT in cardioprotection was recognized more
than 50 years ago by Melville and Varma [31] in experi-
ments executed on rabbits. They observed that the marked
ST-T depression on an electrocardiogram, resulting from
hypoxia or ergometrine administration, was reduced after
intravenous OT injection (1 unit/kg body weight). Interest-
ingly, they also observed that experimental ST-T changes
induced by AVP were abolished by OT co-treatment. Al-
though the authors postulated a metabolic action of OT
enhancing oxygen consumption in cardiac muscle, the
presence of OTR in the heart was discovered 35 years later
[20]. We have recently demonstrated that OT treatment
reduces lethal reperfusion injury of H9¢2 cardiomyoblasts
and inhibits ROS production in cells exposed to hypoxia
[25]. This protection of cell viability was evoked through
the intact OTR because in cells with reduced OTR levels
due to the siRNA-mediated knockdown, treatment with
OT in I-R caused an elevated cell death compared to un-
treated control cells [25]. It is possible that in the absence
of OTR, OT triggers deleterious signaling via the AVP
receptor. We would thus expect that AVP signaling is
detrimental in this context, and OT is favorable. How-
ever this statement may not be accurate in view of the
recent study by Phie et al. [32]. They demonstrated that
in the rat model of Ang II-induced hypertension, chronic
co-treatment with OT failed to prevent the increase of
blood pressure and LV hypertrophy. The authors observed
enhanced end-organ renal injury in rats receiving a com-
bination of OT and Ang II. Indeed, interaction of Ang II
and AVP/OT in the kidney can influence cardiovascular
homeostasis by several mechanisms involving V2R sig-
naling [33].

Several studies have presented the possibility that OT
can serve as a drug for the treatment of ischemic cardiac
disease [19, 34]. OT was also shown to have transient
negative inotropic and chronotropic effects on perfused
isolated dog right atria mediated by NO production and
acetylcholine release at cardiac parasympathetic postgan-
glionic neurons [35]. Ondrejcakova et al. [36] study on
isolated Langendorff-perfused rat hearts showed that the
elimination through electrical stimulation of the negative
chronotropic effect of OT prevented its cardioprotective
action. Furthermore, the authors revealed that perfusion
of the hearts with OT before ischemia resulted in signifi-
cant reduction of the infarct size [36]. The impaired car-
diac work and down-regulation of the OT/OTR system
following MI could be reversed by administration of OT
given before the onset of ischemia and during one week
of reperfusion in a rat model of MI [24]. In the same
study, we have shown that treatment with OT reduced
the expression of pro-inflammatory cytokines (TNFa,
IL-1B and IL-6) and reduced immune cell infiltration
(especially of neutrophils) [24].
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Fig. 1 Proposed cardioprotective signaling of OT during ischemia reperfusion (modified from reference [19]). OT acts via its G protein coupled
receptors (GPCR). OT triggers the PLC-3 and PI3K pathways to stimulate NO production, the regulation of ionic pumps and subsequent inhibition
of the mitochondrial permeability transition pore. OT also stimulates ANP release, which in turn binds to NP receptor A to also inhibit mPTP opening.
QT: oxytocin; OTR: OT receptor; PLC-3: phospholipase C type 3; DAG: diacylglycerol; IP3: inositol-3-phosphate; PKC: protein kinase C; Erk1/2 : Extracellular
regulated kinase 1 and 2; PI3K phosphatidylinositol-3-kinase; eNOS: endothelial nitric oxide synthase; NO: Nitric oxide; sGC: soluble guanylate cyclase;
pGC: particulate guanylate cyclase; cGMP: cyclic guanosine monophosphate; PKG: protein kinase G; ROS: reactive oxygen species; mPTP: mitochondrial
permeability transition pore; mitoKATP: mitochondrial ATP-dependent K* channels; CaM: Ca?*- Calmodulin; CaMKK: CaM kinase kinase; AMPK:
cAMP-activated protein kinase; NPR-A: Natriuretic peptide receptor type A. 1. NHE: exchanger Na*/H" present on cell membrane; 2. Na*/K*
ATPase pomp; 3. Co-transporter Na*/bicarbonate; 4. NCE: exchanger Na*/Ca**

Anaerobic metabolism

\J
Ca®* overload
1 [AMP]/[ATP]
\J
Ischemia Hypercontractility

Cell death

Work by Alizadeh et al. [34] showed that the reduc-
tion in infarct size in the anesthetized rat heart induced
by a pre-treatment with OT (0.03 pg/kg i.p.) 25 min
prior to ischemia was eliminated by the co-treatment
with an inhibitor of the opening of mitoKATP channels,
which have been proposed as the end-effectors of cardi-
oprotective ischemic pre- and postconditioning. In the
study of Ondrajeckova et al. [37] on perfused hearts iso-
lated from male Wistar rats treated chronically with OT,
the cardioprotection was linked with specific phosphoryl-
ation (activation) of p38-MAPK and Akt kinase, an in-
crease in phosphorylated Hsp27 and an elevation in atrial
natriuretic peptide (ANP) levels in left ventricular heart
tissue. Correspondingly, in H9c2 cells, the increased

viability achieved by OT treatment was decreased in
the presence of Wortmannin (the Pi3K-Akt pathway
inhibitor), the cGMP-PKG inhibitor KT-5823, the
sGC inhibitor ODQ and the pGC antagonist A71915
[25]. Confocal microscopy demonstrated that follow-
ing OT treatment p-Akt appeared to accumulate
around the cell nuclei and co-localized with the mito-
chondrial marker Cox IV. It is thus possible that OT
stimulates protection against ROS insult by the for-
mation of signalosomes. This hypothesis is derived
from our experiments showing that OT stimulation
causes intracellular signaling involving Pi3K, Akt and
eNOS [38], known as the canonical factors of signalosomes
derived from GPCR [39].
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We have also observed the paradox that OT treatment
stimulates the production of moderate levels of ROS
whereas OT inhibits excess ROS produced as a conse-
quence of ischemia [25]. The high levels of ROS are
detrimental for CMs but moderate levels of ROS func-
tion as signaling molecules for cardioprotection by
activating protein kinases such as Pi3K/Akt within and
outside the mitochondria [40], as well as the ERK1/2,
MAPK p38 and/or JAK/STAT prosurvival signalling
cascade [28, 41].

Obesity and OT treatment

Several key metabolic effects of OT have been reported
such as anti-inflammatory activity, wound healing, anti-
oxidant activity and increase of glucose uptake in car-
diac and stem cells [19]. The adult male OTR-deficient
mice [14] and both male and female OT knockout mice
[42] express a mild obese phenotype. Zhang et al. [43]
have shown that C57BL/6 mice fed a high fat diet (HFD)
became obese and showed reduced plasma OT levels.
Lowered OT levels in the circulation are also reported in
human diabetes type 1 and 2 [44, 45]. Chronic OT admin-
istration protected against HFD-induced obesity in rodent
models [7, 8, 46]. A recent study of Blevins et al. [47] indi-
cates that chronic that a chronic increase (=21-26 days)
of CNS oxytocin signalling not only prevented weight gain
induced by HFD but also effectively reduced already
established diet-induced obesity. OT also decreased the
genetic-induced obesity observed in Zucker rats [48] and
db/db mice models [49], which bear a mutation in the lep-
tin receptor gene.

OT has many positive metabolic effects based on re-
markable changes in glucose metabolism, lipid profile,
and insulin sensitivity after OT administration. OT dose-
dependently reduces food intake in animal and human
studies (reviewed in [17]). Importantly, OT treatment
improves eating behaviors such that hedonic hyperpha-
gia is reduced and does not interfere with normal hunger
and weight regulation [17, 46, 50, 51]. The 0b/ob mouse
represents a close counterpart to the human condition of
severe obesity, but unlike db/db mice, exhibit leptin defi-
ciency from a mutation in the ob-gene [52]. Ironically, a
recent study revealed that OT treatment of 0b/ob mice
worsened glycemic control, likely from an increased
production of corticosterone and stimulation of hep-
atic gluconeogenesis [50]. The body weight gain-
reducing effect was limited to the fat mass only, with
decreased lipid uptake, lipogenesis, and inflammation,
combined with increased futile cycling in abdominal
adipose tissue. Correspondingly, several clinical trials
(UKPDS33, ACCORD, ADVANCE, and VADT) dem-
onstrated that intensive glycemic control fails to pre-
vent cardiac complications in diabetics or have even
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increased cardiovascular mortality [53]. This calls for
the development of new strategies capable of preserv-
ing heart function in diabetes.

OT intranasal delivery, secure for the treatment in
humans, appears to effectively enable OT to enter the CNS
in mice, rats, nonhuman primates and humans within 30—
35 min post-treatment [54—56]. Intranasal OT administra-
tion increases OT levels also by stimulation of endogenous
synthesis [54, 57], resulting in the prolongation of the OT
half-life and efficacy [58]. This mode of delivery may also
increase OT levels in the circulation if the intranasal deliv-
ery device did not sufficiently target the cribiform plate
[59]. In a recent study, intranasal OT administration in
patients receiving 24 units 4x/day (1 unit ~ 1.7 ug; 1.77 ug/
kg body weight/day) over a period of eight-weeks reduced
obesity and reversed prediabetic changes [13]. We found
that increases in both energy expenditure and brown adi-
pose tissue volume contribute to the decrease of body
mass of OT-treated db/db mice [49].

The role of exercise in obesity and diabetes
Weight loss improves cardiac function in obesity [60]
and especially exercise training reduces events of HF
[61]. There is substantial evidence to support the value
of regular exercise training in patients with obesity and
diabetes [62]. Exercise improves overall cardiorespiratory
fitness and decreases the risk of developing cardiac and
vascular injury [63]. Exercise training is also associated
with an increase in peripheral glucose utilization and re-
duction in white adipose tissue (WAT) content. WAT is
source of leptin, which acts on its hypothalamic receptors
to regulate energy use and induce satiety [64]. WAT
mRNA expression is increased in human obesity as well as
in relevant rodent models [65, 66], and chronically ele-
vated blood levels of this peptide is known to induce leptin
resistance [67], leading to a loss of appetite suppression
and decreased energy production. Further, epidemiological
studies indicate that plasma hyperleptinemia is an inde-
pendent predictor of CV events [68]. Elevated WAT pro-
motes the secretion of monocyte chemotactic factor-1
(MCP-1), which promotes infiltration of macrophages into
WAT [69], increased expression of TNF-a and IL-6, and
decreased expression of adiponectin. This abnormal cyto-
kine pattern is known to attenuate insulin signaling re-
sponses in tissues, leading to insulin resistance [70]. In
diet-induced obesity, running activity decreases the ex-
pression of mRNA for leptin in both visceral adipose tissue
and WAT [71, 72]. However, the effects of regular exercise
on WAT and leptin content in plasma of humans are in-
consistent, largely due to differences in the exercise pro-
gram, duration of intervention, pre-exercise body and fat
mass index, and whether exercise is combined with diet
restriction [73].
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The cardiac OT/OTR system and exercise

The cardiac OT system is downregulated in DC [74], MI
[24], and hypertension [75] suggesting that OTR deficiency
magnifies these pathologies. Lowered OT plasma levels are
also linked to increased sensitivity of cardiovascular system
to stress [76]. Interestingly, down-regulation of the OT/
OTR system (which includes natriuretic peptides (NPs)
ANP, BNP) in the LV of ovariectomized rats can be effect-
ively prevented by regular exercise training [19]. Indeed,
hypothalamic and LV mRNA levels of OT, OTR, and NPs
were restored back to normal levels after 8-weeks of mod-
erate intensity exercise training on a treadmill. We have
investigated the effects of exercise training in the db/db
mice, a mouse model of diabetes and obesity used to study
DC. These mice display genetic mutations in leptin recep-
tor, resulting in a diabetic profile induced by hyperphagia.
We have demonstrated that exercise training failed to up-
regulate of the OT/OTR system in hearts of db/db mice.
After eight weeks of moderate intensity treadmill running,
mRNA expression of the OT/OTR system in db/db hearts
remained low and unchanged from pre-training levels
[74]. Expression of ANP and BNP was similarity low and
even further decreased after exercise training, and training
had no effect on the extent of obesity and blood glucose
concentrations [72], suggesting that the hyperglycemic state
may contribute to reduced expression of OT and NPs. This
hypothesis was suggested earlier by Kobayashi et al. [77]
indicating that acute hyperglycemic conditions and
streptozotocin-induced type 1 diabetes reduced the ex-
pression of GATA4, a transcription factor associated
with the synthesis of structural and cardioprotective
genes, including OT/OTR and NPs [78]. Hearts from
db/db mice exhibited low mRNA and protein levels of
GATA4 [79], and exercise training was beneficial in
stimulating GATA4 protein expression, albeit in the ab-
sence of the OT/OTR system. Degradation of GATA4
by hyperglycemia is induced by ROS and ubiquitination
by ubiquitin-proteaosomes [80], and a benefit of exercise
may be related to reduced expression of E3-ubiquitin lig-
ase MURFI1 [81]. The possibility exists that GATA4 is not
required and that expression of another transcription fac-
tor, such as GATAG6 [82], is involved in the synthesis of
OT and NPs. The role of GATA4 and exercise training on
the OT/OTR system is further complicated by our recent
findings showing that expression of this transcription fac-
tor is not altered by the effects of hyperglycemia or obesity
in hearts of 0b/ob mice [83]. Eight weeks of spontaneous
running in ob/ob mice increased cardiac mRNA expres-
sion of GATA4, but disrupted glucose and triglyceride
regulation. Consistent with the gene profile observed in
db/db mice after exercise training, expression of OTR,
ANP, BNP, and C-type NP was reduced. One important
aspect that arises from this 0b/ob study is whether lep-
tin is key to this aberrant synthesis of the OT/OTR
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system. In addition to its well-established role in appe-
tite control, leptin is known for stimulating running ac-
tivity in mice [84].

Normalization of OT plasma levels and
upregulation of the cardiac OT/OTR system
protects the heart against DC

OT treatment in four-week old db/db diabetic mice for a
period of 12 weeks improved body parameters, metabolic
parameters (including insulin resistance) and protected
against systolic and diastolic cardiac dysfunction, ROS
production, apoptosis and fibrosis [49]. OT treatment pre-
vented the reduction in cardiac ANP and BNP gene ex-
pression in db/db mice as well as Gata4, the transcription
factor of genes required in the maintenance of cardiac
structure and function [85]. BNP treatment in db/db mice
also reduced CM hypertrophy and increased local OT/
OTR expression [82]. OT treatment resulted in activation
of Akt-1 in cardiac cells which targets an array of diverse
cellular functions, including stimulate NO production,
protein synthesis, energy metabolism, and cellular survival
[86]. OT also increased the activity of AMP-activated pro-
tein kinase (AMPK) and induced the expression of cardio-
protective genes [38]. OT treated db/db mice displayed
decrease in expression of cardiac inflammatory markers,
including NF-kB, the IL-1B and IL-6. The marked im-
provement of the cardiac work and structure, measured
by echocardiography, was achieved by OT treatment in
spite of a modest reduction of glycemia [49]. We found
that increases in both energy expenditure and brown adi-
pose tissue volume contribute to the decrease of body
mass of OT-treated db/db mice [49]. A recent study re-
ports the contribution of the OT system in the alleviation
of obesity and reduction of glycemia by retinoic acid treat-
ment in leptin-deficient, 0b/ob obese diabetic mice [87].
These results suggest the usefulness of OT as a thera-
peutic alternative because it bypasses the defective
insulin-signaling pathway(s) in subjects with type 2 dia-
betes with obesity.

The mechanisms responsible for cardiac protection by
OT against DC are not yet understood. It is unclear
whether OT acts via a number of organs and tissues, or
specifically enhances OT/OTR signaling in cardiac cells.

Oxytocin treatment provides a method of
regenerating cardiac tissue

Some evidence indicates that the heart, long considered
to be a terminally differentiated organ, contains CM-like
cells which undergo mitosis, as reported in patients with
acute myocardial injury [88]. These cells are defined as
cardiac progenitor cells (CPCs) and may contribute in
cardiac reparative processes [89]. Diabetes exerts a detri-
mental effect on the proliferation and survival of CPCs
in both humans and animal models of diabetes [90].
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Similarly, aging and diabetes mellitus also have been
shown to correlate negatively with other stem cell types
such as MSCs [91] and endothelial progenitor cells
(EPC) [92].

Oxidative stress induces senescence of CPCs in dia-
betic cardiomyopathy [93]. It is suggested that the pre-
mature aging of cardiac stem leads to the development
of HF [94]. The loss of cardiac cells is accompanied by
a decrease in cardiac muscle mass, chamber dilation,
and impaired ventricular function [95]. Recent reports
suggest that senescent CPCs from a diseased heart can
be activated and reverted to the “young” phenotype by
treatment with factors that change cellular signaling
[96]. OT stimulates the proliferation of cardiac stem
cells [97, 98], and also their differentiation to CMs and
ECs [19]. The expression of the OT/OTR system corre-
lates with youthful cardiac phenotypic characteristics
[21], and it is possible that diabetes-related changes in
viability, morphology and proliferation can be reduced
by OT treatment.

MSCs are able to hone in on the injured heart, to en-
graft into damaged blood vessels, to differentiate into car-
diac cells, and to exert a paracrine effect by the local
release of vascular growth factors and cytokines [99]. Re-
cent studies have shown that direct injection with OT-
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treated MSCs into the rat heart after ischemia-reperfusion
injury improves their engraftment rate and results in an en-
hanced cardioprotective effect via increased transmigration
activity to the injured zone, the upregulation of matrix
metalloproteinase-2 mRNA, the integration of MSCs into
the myocardium [100]. OT stimulates in these cells the pro-
duction of paracrine anti-fibrotic and anti-inflammatory
factors [98]. For improving survival, proliferation, and dif-
ferentiation MSC in diabetic conditions either in vitro or
after transplantation in pre-clinical models, Kim et al. pro-
posed OT as a priming reagent restoring the angiogenesis
activity of MSC [101].

Conclusions

Several investigations have clearly established the role of
OT in lowering of body weight by mechanisms involving
increased energy expenditure, reduced adiposity and food
intake. In models of diabetes and obesity as well as in hu-
man diabetes, OT deficiency has been reported. Improve-
ment in body weight and composition can be obtained by
central, peripheral and intranasal OT administration. In
addition, an OT effect as a prosocial hormone may provide
additional benefit in the treatment of complex diseases
such as diabetes and metabolic syndrome. Preclinical stud-
ies on animal models have demonstrated that OT limits
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myocardial ischemia and reperfusion injury, independ-
ent from its glucose-lowering effect. The OT-mediated
cardioprotection include activation of the NPs and NO
both increasing formation of cGMP in the heart, activa-
tion of AMPK and by inhibition of excess of ROS pro-
duced as a consequence of ischemia. The potential OT
benefit in diabetic cardiomyopathy is illustrated on
Fig. 2. Exercise training increases the OT/OTR system
in the ovariectomized-rat, but the role of exercise on
this system in obesity and diabetes remain poorly
understood. The major clinical consequence of diastolic
dysfunction is exertional dyspnea, which impedes the
capacity of diabetic individuals to perform exercise, an
important aspect of diabetes management, particularly
in the obesity [102]. Considering the efficacy of intrana-
sal OT delivery in stimulating the synthesis of central
and peripheral OT, and in reducing obesity and hedonic
eating habits, investigation into the role of combined
intranasal OT treatment and exercise training are war-
ranted. Consequently, treatment with OT might poten-
tially improve cardiovascular outcome in patients at
risk for heart failure especially in association with obes-
ity and diabetes.
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