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Abstract

Background: We characterized in detail (oral and intravenous glucose tolerance tests (OGTT and IVGTT), euglycemic
hyperinsulinemic clamp, adipose tissue biopsy), healthy first-degree relatives (FDR) of individuals with type 2 diabetes
(T2D), to examine predictive factors for future development of impaired glucose tolerance (IGT) or T2D.

Methods: Non-diabetic FDR (n = 138, mean age 40.5 ± 6.5 years, 57 % women) underwent an extended OGTT every
3 years to assess any deterioration in glucose tolerance status. Differences between groups were assessed by logistic fit
for continuous variables and by contingency analysis for categorical variables. Multiple logistic regression analysis was
applied to adjust for confounding variables.

Results: At follow-up (mean 5.6 ± 2.4 years) 19 subjects had IGT and 4 had T2D. At baseline these 23 subjects had
more family members with T2D, higher fasting plasma glucose, higher OGTT plasma glucose at 120 min, higher HbA1c,
lower M-value and higher total cholesterol compared to subjects with normal glucose tolerance (NGT). There were
significantly larger changes in weight, BMI, fasting plasma glucose, OGTT plasma glucose at 120 min and HbA1c in
individuals developing IGT or T2D during the follow-up period than the subjects remaining NGT.
Crude predictors of deteriorating glucose tolerance were age, family history of diabetes and of hypertension, OGTT
plasma glucose levels at 60 min, 90 min, and 120 min, as well as serum bilirubin, ALP and creatinine (p-values <0.05).
A multiple nominal logistic regression model revealed that male sex, low M-value and high physical exercise (p-values
<0.05) predicted development of IGT/T2DM.

Conclusion: In sum, genetically predisposed individuals for T2D with deteriorating glucose tolerance exhibit insulin
resistance as well as beta-cell and signs of adipose tissue dysfunction, emphasizing the multifactorial pathophysiology
in the development of IGT and T2D.

Background
The rapid global increase in the number of individuals with
type 2 diabetes (T2D) was considered caused by increasing
life expectancy, sedentary lifestyle and disadvantageous diet
habits, possibly in combination with genetic and environ-
mental factors [1, 2]. In spite of only weak associations
between specific genes and the development of T2D, first-
degree relatives (FDR) of T2D patients are clearly at an
elevated risk of developing the same disease, proportionally
with the number of family members affected [1, 3, 4].

The pathophysiology of T2D has been extensively
studied, and the current view is that it is indeed multi-
factorial [5]. The basis is a combination of impairments
in insulin secretion and sensitivity, as well as increased
hepatic glucose production, although disturbances in
glucagon production, incretin effects, renal function
and appetite regulation also may play important roles.
Adipocyte dysfunction and its associated adipocyte cell
hypertrophy and production of pro-inflammatory cyto-
kines, such as interleukin 6 (IL-6) and tumor necrosis
factor alpha (TNF-α), also contribute to the develop-
ment of insulin resistance and T2D [5].
In FDR, genetic and intrauterine factors, as well as

lifestyle-related acquired factors associated with insulin
resistance and pancreatic beta cell dysfunction, have been
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proposed to constitute the increased susceptibility to T2D
[3, 6–11]. Boesgaard et al. have shown that there is indeed
an association between specific genes and both beta cell
dysfunction and insulin resistance in this group of individ-
uals [8, 9]. Studies have also demonstrated that normogly-
caemic FDR exhibit dyslipidemia, including postprandial
hypertriglyceridemia which is closely linked to glucose in-
tolerance, and anthropometric risk factors such as higher
body mass index (BMI) and waist circumference compared
with individuals without family history of T2D [11–13].
We have also recently demonstrated that adipocyte and
adipose tissue dysfunction with remodeling and fibrosis are
likely to contribute to the increased risk of developing T2D
in FDR [14, 15].
In this prospective cohort study of 138 non-diabetic

FDR we set out to explore predictive factors in glucose
metabolism and adipocyte function for future development
of IGT and T2D. We used intravenous glucose tolerance
tests, euglycemic hyperinsulinemic clamps and subcutane-
ous adipose tissue biopsies to characterize in detail insulin
secretion and sensitivity, as well as adipocyte function, and
to study correlations between these.

Methods
Ethics statement
The study protocol was approved by the local Ethical
Committees at the Sahlgrenska Academy at the University
of Gothenburg (S 655–03) and was performed in agree-
ment with the Declaration of Helsinki. All subjects received
oral and written information and gave written consent to
participate.

Participants
We recruited 138 FDR (mean age 40.5 ± 6.5 years, 57 %
women) via newspaper advertisements. We used the fol-
lowing inclusion criteria: at least one first-degree relative
with T2D, age 18–40 years, general good health, and no
continuous medication. T2D, established by fasting plasma
glucose values and an oral glucose tolerance test (OGTT),
was an exclusion criterion. Specifically, no continuous
medication was a required criterion also at follow-up exam-
inations. We used the World Health Organization criteria
for impaired glucose tolerance and diabetes mellitus [16].

Measurements at baseline
Anthropometric data was collected at the first visit. Body
weight and height, and waist and hip circumferences were
recorded, BMI was calculated, and the proportions of body
fat and lean body mass (LBM) were determined using bio-
electrical impedance (single frequency, 50 kHz; Animeter,
HTS, Odense, Denmark). Blood pressure was measured in
a sitting position after a five minutes rest with a mercury
sphygmomanometer. High physical activity was defined as
exercising four or more times a week and accentuated

family history of T2D (FH+) was defined as having more
than one relative with the disease, including one FDR.
A subcutaneous abdominal adipose tissue biopsy was

performed. The biopsies (approximately 20–30 mg) were
obtained with a needle aspiration technique, from the
paraumbilical region after local infiltrative anesthesia with
lidocaine (20 ml, 0.5 %).
On a separate occasion, fasting blood samples were

drawn after 12 h of fasting and were followed by an
OGTT (75 g glucose) to evaluate glucose tolerance.
Samples for measurement of plasma glucose and
serum insulin were drawn after 0, 30, 90 and 120 min.
Fasting plasma insulin and fasting plasma glucose
were used to calculate a HOMA-IR index using the
formula HOMA-IR = (fasting plasma glucose x fasting
plasma insulin) / 22.5 [17].
On a third occasion, again after 12 h of fasting, an intra-

venous glucose tolerance test (IVGTT) was first performed
to determine the first and second phases of insulin secre-
tion. A bolus of glucose (300 mg/kg in a 50 % solution) was
given within 30 s into an antecubital vein. Samples for the
measurement of plasma glucose and insulin (arterialised
venous blood) were drawn at −5, 0, 2, 4, 6, 8, 10, 20, 30, 40,
50 and 60 min. The acute and the late insulin responses, i.e.
incremental area under the insulin curve, (AIR, 0–10 min;
LIR, 10–60 min) were calculated using the trapezoidal
method.
Thereafter, 60 min after the glucose bolus, a hyperin-

sulinemic euglycaemic clamp was initiated (insulin
infusion: 240 pmol m-2 min-1 for 120 min) to evaluate
insulin sensitivity [18]. Whole blood glucose was
clamped at 5.0 mmol/l for the next 120 min by infusion
of 20 % glucose at various rates according to glucose
measurements performed at five minutes intervals (YSI,
Yellow Springs Instrument Company, OH). Insulin sen-
sitivity (M) was calculated as the mean glucose infusion
rate during the last 30 min of the clamp adjusted for
lean body mass, and M/I was calculated as the M-value
corrected for steady-state insulin concentrations.

Follow-up examinations
Anthropometric measurements, fasting blood samples,
and an OGTT were performed every three years to assess
any deterioration in glucose tolerance, defined as IGT
and/or T2D at follow-up.

Laboratory analyses
Fasting levels of plasma glucose, insulin, and blood lipids
were measured using standard laboratory methods
(Department of Chemistry, Sahlgrenska University
Hospital, Gothenburg, Sweden). LDL cholesterol was
calculated using the Friedewald equation [19]. HbA1c was
determined using high-performance liquid chromatog-
raphy (Mono-S method). In this study, all HbA1c values
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were converted to International Federation of Clinical
Chemistry and Laboratory Medicine (IFCC) standard
levels using the formula: HbA1c (IFCC) = (10.45 ×HbA1c
(Mono-S) -10.62 [20]. Plasma insulin was measured at the
University of Tübingen, Germany, by micro-particle en-
zyme immunoassay (Abbott Laboratories, Tokyo, Japan).
Total circulating serum adiponectin concentrations

were measured by an ultrasensitive ELISA (B-Bridge,
Sunnyvale, CA). Plasma IL-6 levels were quantified using
an IL-6 specific proliferation bioassay. IL-6 concentrations
were calculated using dilutions of recombinant human IL-6
(Genzyme, Cambridge, Massachusetts, USA) as previously
described [21].

Adipocyte cell size measurement
Isolation of adipocytes after the biopsy was performed
essentially as previously described [22]. Briefly, biopsies
were washed to remove traces of blood and treated with
collagenase (1 mg/ml) (Sigma, St Louise, MO, USA) for
60 min at 37 °C in a shaking water bath. Isolated adipo-
cytes were filtered through a 250 mm nylon mesh and
washed with fresh medium. Adipocyte cells were placed
on a siliconized glass slide and 100 consecutive cell diame-
ters were measured with a calibrated ocular and expressed
as the average value in μm.

Cell lysates and immunoblotting
Adipose tissue specimens obtained from needle biopsies
were treated as described above. Cells were then lysed in
the presence of protease inhibitors followed by protein
separation by SDS-PAGE as described [23].

Statistical analysis
The results for continuous variables are given as means ±
one standard deviation and the results for categorical
variables are given as frequencies. A value of p < 0.05 was
considered statistically significant. All variables were visu-
ally assessed for normality and considered normally distrib-
uted. The differences between the groups were assessed
by logistic fit for continuous variables and by contin-
gency analysis and specifically Pearson Chi-square tests,
for categorical variables. Multiple linear/logistic regres-
sion analyses were applied to adjust for confounding
variables. Data analyses were performed using JMP ver-
sion 10.0 and SAS 9.1.3 (SAS Institute Inc., Cary, North
Carolina, USA), as well as R Project for Statistical Com-
puting version 3.1.2. (Vienna, Austria: R Foundation for
Statistical Computing).

Results
Baseline and follow-up results
Clinical and metabolic characteristics at baseline are given
in Tables 1 and 2. There were 138 individuals at baseline,
whereof 21 exhibited IGT. The IGT group had slightly but

significantly higher BMI, as well as higher fasting plasma
glucose and insulin levels, OGTT plasma glucose at
120 min, HOMA-IR, total and LDL cholesterol, serum tri-
glycerides and adipocyte cell size, while insulin sensitivity
(M-values and M/I) and HDL cholesterol were lower.
The mean follow-up time was 5.6 ± 2.4 years. At their

last follow-up visit, 112 subjects were normoglycaemic,
19 had IGT and 4 had developed T2D. 3 individuals
were lost to follow-up. Examining only individuals who
were normoglycaemic at baseline (n = 114), clinical and
metabolic characteristics at baseline are given in Table 3,
grouped according to glucose tolerance status at
follow-up. There were statistically significant differ-
ences between groups in follow-up time, age, family
history of diabetes and OGTT plasma glucose levels at
120 min between subjects remaining NGT compared to
the ones developing IGT/T2D. At the end of the
follow-up period (5.3 and 6.9 years, respectively; p =
0.0028), there were significantly larger increases only in
fat percentage and OGTT plasma glucose at 120 min in
the individuals with IGT/T2D at the end of follow-up
(data given in Table 4).

Results for the group exhibiting IGT or T2D at follow-up
Independently of baseline glucose tolerance status, 23 indi-
viduals exhibited IGT or T2D at the end of follow-up (5.4
and 6.3 years, respectively, n.s.). Their characteristics at
baseline, compared to the group that at follow-up were
normoglycemic, are given in Table 5. There were significant
differences in family history of T2D, fasting plasma glucose
levels, OGTT plasma glucose at 120 min, HbA1c and M-
value, as well as total cholesterol. As expected, there were
significantly larger changes in weight, BMI, fasting plasma
glucose, OGTT plasma glucose at 120 min and HbA1c in
individuals developing IGT or T2D during the follow-up
period (data not shown) than the subjects remaining NGT.
In this group, there were significant increases in weight,

BMI, OGTT plasma glucose levels at 120 min and acute
insulin response (IVGTT AIR), while insulin sensitivity (M)
significantly decreased. The increase in late insulin response
(IVGTT LIR) was not statistically significant (p = 0.073).
The mean weight increased by 5.8 ± 8.5 kg (p = 0.003),
mean BMI by 1.5 ± 2.0 kg/m2 (p = 0.001), mean OGTT
plasma glucose at 120 min by 5.9 ± 4.6 mmol/L (p = 0.001),
mean acute insulin response by 691 ± 645 pmol/L x min
(p = 0.047), and mean M-value decreased by −1.5 ± 2.2
GIR/lbm/min (p = 0.016).

Predictors
Statistically significant crude (unadjusted) predictors of de-
teriorating glucose tolerance status were age, family history
of diabetes (FH+), family history of hypertension, OGTT
plasma glucose levels at 60 min, 90 min, and 120 min,
serum creatinine, serum ALP and serum bilirubin (all p-
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values < 0.05). The three strongest predictors were family
history of diabetes (p = 0.0004) and OGTT plasma glucose
level at 90 min (p = 0.0040) and at 120 min (p = 0.0070).
We also used a logistic regression model to evaluate

independent predictors of the development of IGT or

T2D from normoglycaemia at baseline (Tables 6 and 7).
In Table 6, including 118 individuals’ data, male sex
(p = 0.03) and low M-value (p = 0.01) both reached
statistical significance as independent predictors. In
Table 7, including more independent variables but

Table 1 Clinical characteristics of all subjects at baseline, also stratified by glucose tolerance status at baseline

All NGT IGT P-value (NGT-IGT)

N 138 117 21

Age (years) 40.5 ± 6.5 40.2 ± 6.7 42.5 ± 5.0 n.s.

Sex (% male) 60 (43 %) 51 (44 %) 9 (43 %) n.s.

Weight (kg) 77.1 ± 13.0 76.8 ± 12.8 79.5 ± 14.4 n.s.

BMI (kg/m2) 25.2 ± 3.4 25.0 ± 3.3 26.7 ± 3.7 0.049

Waist (cm) 88.9 ± 10.4 88.3 ± 10.1 92.6 ± 11.4 n.s.

Waist/hip circumference ratio 0.87 ± 0.1 0.86 ± 0.1 0.89 ± 0.1 n.s.

Fat percent (%) 25.8 ± 7.8 25.2 ± 8.0 28.8 ± 6.0 0.058

Systolic blood pressure (mmHg) 118 ± 11 118 ± 10 122 ± 14 0.098

Diastolic blood pressure (mmHg) 75 ± 9 75 ± 9 79 ± 10 0.081

Currently smoking 13 (10 %) 13 (12 %) 0 (0 %) n.s.

High physical activity 46 (35 %) 43 (38 %) 3 (17 %) 0.074

High heredity for T2D 78 (59 %) 68 (61 %) 10 (48 %) 0.092

NGT = normal glucose tolerance. IGT = impaired glucose tolerance. Data are means ± standard deviation. P-values below 0.1 are given numerically, otherwise
stated as not significant (n.s.)

Table 2 Metabolic characteristics of all subjects at baseline, also stratified by glucose tolerance status at baseline

All NGT IGT P-value (NGT-IGT)

N 138 117 21

Fasting plasma glucose (mmol/L) 4.8 ± 0.4 4.8 ± 0.4 5.1 ± 0.6 0.006

Fasting plasma insulin (pmol/L) 49.3 ± 31.9 45.1 ± 27.0 69.1 ± 44.4 0.013

OGTT 2 h plasma glucose (mmol/L) 6.0 ± 1.6 5.5 ± 1.1 8.7 ± 0.7 <0.001

HbA1c (mmol/mol) 32.5 ± 2.4 32.6 ± 2.3 32.1 ± 3.3 n.s.

M-value (GIR/lbm/min) 12.8 ± 3.8 13.3 ± 3.7 10.21 ± 3.4 0.002

M/I (GIR/lbm/min/pmol/L) 0.022 ± 0.01 0.023 ± 0.01 0.017 + 0.01 0.010

IVGTT AIR (pmol/L x min) 3187 ± 2014 3291 ± 2092 2547 ± 1303 n.s.

IVGTT LIR (pmol/L x min) 7760 ± 4354 7493 ± 4177 9427 ± 5150 0.092

HOMA-IR (mmol x mU/L2) 10.6 ± 7.5 9.5 ± 6.1 15.8 ± 11.0 0.009

Serum cholesterol (mmol/L) 4.9 ± 0.9 4.8 ± 0.9 5.3 ± 0.8 0.016

Serum HDL (mmol/L) 1.6 ± 0.4 1.6 ± 0.4 1.4 ± 0.3 0.029

Serum triglycerides (mmol/L) 1.0 ± 0.5 1.0 ± 0.5 1.4 ± 0.7 0.012

Serum LDL (mmol/L) 2.9 ± 0.8 2.8 ± 0.7 3.3 ± 0.9 0.004

Urine albumin (>20 mg/L) 69 (51 %) 55 (51 %) 8 (44 %)

Serum ALT (μkat/L) 0.43 ± 0.27 0.42 ± 0.24 0.50 ± 0.39 n.s.

Serum CRP (mg/L) 1.2 ± 2.0 1.1 ± 2.1 1.5 ± 1.4 n.s.

Serum creatinine (μmol/L) 88 ± 16 88 ± 16 87 ± 15 n.s.

Adipocyte cell size (μm) 94.3 ± 12.7 93.2 ± 13.1 101.1 ± 7.7 0.017

Serum adiponectin (μg/mL) 9.1 ± 4.6 9.3 ± 4.6 8.0 ± 4.3 n.s.

Il-6 (ng/mL) 45.3 ± 21.7 44.8 ± 21.4 49.3 ± 24.3 n.s.

NGT = normal glucose tolerance. IGT = impaired glucose tolerance. IL-6 = interleukin-6. Data are mean ± standard deviation. P-values have been calculated as stated
in Methods. P-values below 0.1 are given numerically, otherwise stated as not significant (n.s.)
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only 79 individuals, only high physical exercise (p =
0.02) reached statistical significance.

Correlations with measures of insulin secretion
We also examined the correlation between measures of
insulin secretion and adipocyte cell size and serum adipo-
nectin levels. At baseline, there were weak but statistically
significant (unadjusted) positive correlations between adi-
pocyte cell size and IVGTT AIR (R2 = 0.07) and IVGTT
LIR (R2 = 0.18), and negative correlations between serum
adiponectin concentrations and IVGTT AIR (R2 = 0.04)

and IVGTT LIR (R2 = 0.09), (p-values <0.05), when exam-
ining the full cohort. When the groups were analyzed sep-
arately, only larger adipose tissue cell size was correlated
to IVGTT LIR at baseline (p-value <0.05) in the group
that remained NGTat follow-up.

Discussion
The results of this prospective cohort study support the
concept that the development of T2D in high-risk individ-
uals is indeed multifactorial and that the involved patho-
physiological mechanisms are closely linked. Subjects with

Table 3 Baseline characteristics of subjects with NGT at baseline, according to glycemic control status at follow-up

NGT-NGT NGT-IGT/T2D P-value

N 100 14

Follow-up time (years) 5.3 ± 2.4 6.9 ± 2.2 0.028

Age (years) 39.5 ± 6.8 43.6 ± 5.3 0.039

Sex (% male) 46 (46 %) 4 (28,5 %) n.s.

Weight (kg) 77.2 ± 13.1 74.7 ± 11.6 n.s.

BMI (kg/m2) 24.9 ± 3.3 25.4 ± 3.3 n.s.

Waist (cm) 88.1 ± 10.3 89.1 ± 10.1 n.s.

Waist/hip circumference ratio 0.86 ± 0.09 0.87 ± 0.08 n.s.

Systolic blood pressure (mmHg) 117 ± 10 121 ± 9 n.s.

Diastolic blood pressure (mmHg) 75 ± 9 74 ± 6 n.s.

Fat percent (%) 24.7 ± 8.1 28.4 ± 7.3 n.s.

High heredity for T2D 56 (59 %) 11 (79 %) <0.001

High physical activity 36 (38 %) 7 (50 %) n.s.

Currently smoking 11 (11 %) 2 (14 %) n.s.

Fasting plasma glucose (mmol/L) 4.8 ± 0.4 4.9 ± 0.5 n.s.

Fasting plasma insulin (pmol/L) 45.7 ± 28.9 44.7 ± 13.4 n.s.

OGTT 2 h plasma glucose (mmol/L) 5.5 ± 1.1 6.4 ± 0.9 0.007

HbA1c (mmol/mol) 32.4 ± 2.2 33.6 ± 2.8 0.067

M-value (GIR/lbm/min 30 min) 13.5 ± 3.8 11.7 ± 3.3 n.s.

M/I (GIR/lbm/min/ pmol/L) 0.02 ± 0.01 0.02 ± 0.01 n.s.

IVGTT AIR (pmol/L x min) 3295 ± 2060 3483 ± 2500 n.s.

IVGTT LIR (pmol/L x min) 7354 ± 4089 8999 ± 4868 n.s.

HOMA-IR (mmol x mU/L2) 9.6 ± 6.5 9.6 ± 3.4 n.s.

Serum cholesterol (mmol/l) 4.8 ± 0.9 5.2 ± 0.9 n.s.

Serum HDL (mmol/L) 1.6 ± 0.4 1.7 ± 0.4 n.s.

Serum triglycerides (mmol/L) 1.0 ± 0.5 1.0 ± 0.3 n.s.

Serum LDL (mmol/L) 2.7 ± 0.7 3.0 ± 0.8 n.s.

Serum ALT μkat/L) 0.42 ± 0.25 0.41 ± 0.21 n.s.

Serum CRP (mg/L) 1.16 ± 2.27 1.01 ± 1.15 n.s.

Serum creatinine (μmol/L) 87 ± 15 97 ± 24 0.046

Adipocyte cell size (μm) 92.2 ± 12.4 98.2 ± 16.0 n.s.

Serum adiponectin (μg/mL) 9.2 ± 4.7 8.8 ± 4.0 n.s

Il-6 (ng/mL) 43.4 ± 22.6 51.4 ± 17.5 n.s.

NGT = normal glucose tolerance. IGT = impaired glucose tolerance. IL-6 = interleukin-6. Data are mean ± standard deviation. P-values have been calculated as stated
in Methods. P-values below 0.1 are given numerically, otherwise stated as not significant (n.s.)
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first-degree relatives with T2D thus have unfavorable body
composition as well as reduced insulin sensitivity, beta cell
dysfunction, dyslipidemia and, at the trend level, exhibit
markers of adipose tissue cell hypertrophy and dysfunc-
tion prior to developing IGT/T2D.
Previous cross-sectional studies have demonstrated

impairments in glucose metabolism in non-diabetic FDR
compared with control groups. Results from the RISC
study indicated insulin resistance and beta cell dysfunction
in response to an oral glucose challenge, and suggested
that beta cell dysfunction is the major defect determining
diabetes development in diabetic offspring [3]. The Botnia
study concluded that subjects with a family history of T2D
displayed lower disposition indices and lower physical
fitness, independent of level of physical activity, as well as
an impaired capacity of beta cells to compensate for an
increase in insulin resistance imposed by an increase in
BMI [24]. Results from the EUGENE2 study have also sug-
gested associations between specific genes contributing to
dysfunctional beta cells or insulin resistance [8, 9].
Prospectively, it was recently shown in the control group

of the ACT NOW trial, that HbA1c and markers of beta
cell dysfunction (insulin secretion/insulin resistance index
after an OGTT) predicted the development of T2D in
patients with IGT during 2.4 years of follow-up [7]. In a
Danish population-based study of patients with IGT or IFG
the results of fasting laboratory measures and an OGTT
showed that hypertension, higher BMI, serum triglycerides
and plasma glucose levels predicted T2D during a 3.5 year
follow-up period [25]. In a similar study based on OGTT
and four years of follow-up, Moromoto et al. proposed that
disturbances in insulin secretion had a greater impact on
the incidence of type 2 diabetes than insulin resistance in a
Japanese population [26]. In the current prospective study
with the primary aim to evaluate pathophysiological

mechanisms in FDR, we confirm and extend the previous
results using state of the art methodology (intravenous glu-
cose tolerance tests and euglycemic hyperinsulinemic
clamp) for more exact determination of insulin secretion
and insulin sensitivity [27].
Several studies have proposed that adipose tissue dys-

function may contribute to insulin resistance. Key char-
acteristics for a dysfunctional adipose tissue are cellular
hypertrophy, impaired adipocyte differentiation and a
pro-inflammatory adipokine secretion pattern in
addition to remodeling and tissue fibrosis [28]. Recent
publications by our group have confirmed that this asso-
ciation is found also among FDR to T2D patients. Yang
et al. concluded that adipocyte cell size, a well-known
predictor of later development of T2D [29], in addition
to BMI, is associated with reduced insulin sensitivity in
FDR [14]. Furthermore, in a later publication we could
show that healthy and normal glucose tolerant FDR had
increased HOMA-IR, adipocyte hypertrophy, adipose
tissue inflammation and slightly reduced serum adipo-
nectin levels compared to healthy controls in spite of no
difference in BMI or percent body fat [15].
In the present study we show at the trend level that

markers of adipocyte dysfunction such as adipocyte cell
size and circulating IL-6 are further altered in FDR with
manifest IGT (however, not reaching statistical signifi-
cance), strengthening the concept of adipose tissue dys-
function as a contributor to the development of insulin
resistance and T2D. Interestingly, in a detailed study of
obese individuals with or without insulin resistance
Kloting et al. demonstrated that insulin sensitive obesity
was characterized by smaller adipocytes, higher secretion
of adiponectin and reduced adipose tissue inflammation,
in fact, the strongest predictor of insulin sensitivity was
the combination of adiponectin and cellular markers of

Table 4 Change in clinical and metabolic parameters, presented in all subjects as well as the subgroup that were normoglycaemic
at baseline, stratified according to follow up glycemic tolerance status

All NGT-NGT NGT-IGT/T2D P-values

N 135 100 14

Delta BMI (kg/m2) 0.9 ± 2.0 0.7 ± 1.6 1,7 ± 2,3 0,0569

Delta weight (kg) 2.6 ± 6.3 1.9 ± 4.9 4.8 ± 7.1 0.062

Delta fat per cent (%) 0.6 ± 4.2 0.3 ± 4.1 3.4 ± 5.2 0.0203*

Delta fasting plasma glucose (mmol/L) 0.2 ± 1.1 0.1 ± 0.4 0.3 ± 0.6 n.s.

Delta OGTT 2 h plasma glucose (mmol/L) 0.5 ± 2.5 0.1 ± 1.1 2.8 ± 1.3 <0.0001***

Delta HbA1c (mmol/mol) 1.4 ± 6.8 0.5 ± 2.1 1.1 ± 1.7 n.s.

Delta serum triglycerides (mmol/L) −0.1 ± 0.6 0.0 ± 0.7 −0.1 ± 0.4 n.s.

Delta serum cholesterol (mmol/L) 0.2 ± 0.8 0.2 ± 0.9 0.3 ± 1.1 n.s.

Delta serum HDL (mmol/L) 0.03 ± 0.3 0.05 ± 0.2 −0.1 ± 0.3 0.0858

Delta serum LDL (mmol/L) 0.2 ± 0.6 0.3 ± 0.6 0.4 ± 0.9 n.s.

NGT = normal glucose tolerance. IGT = impaired glucose tolerance. T2D = type 2 diabetes mellitus. Data are means ± standard deviation. Delta values have been
calculated subtracting the baseline value from the follow-up value of the same variable. P-values below 0.1 are given numerically, otherwise stated as not
significant (n.s.)
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inflammation, markers that were distinctive also in the
present study [30]. Importantly, Andersson et al. recently
concluded that reversing adipose tissue dysfunction is pos-
sible by weight loss and that this correlates with reduction
of the metabolic risk profile. Furthermore, the reduction in
subcutaneous adipocyte volume associate more strongly
with improvement of insulin sensitivity compared to fat
mass reduction per se [31].
In our study serum adiponectin levels did not signifi-

cantly differ between the group of FDR developing

IGT/T2DM and the group of FDR remaining NGT.
However, Onat et al. showed that serum adiponectin
levels did in fact not diminish linearly with increasing
BMI [32]. The authors concluded that high serum
adiponectin in certain populations fail to exhibit anti-
inflammatory properties, and that gender, partially ex-
plained by sex hormone binding globulin levels in women,
influenced the correlation between serum adiponectin
levels and anti-inflammatory markers [32]. This hypoth-
esis could possibly contribute to explaining why serum

Table 5 Clinical characteristics at baseline of the subjects with NGT or IGT/T2DM at follow-up, independent of baseline glycemic
tolerance status

NGT IGT/T2D P-value

N 112 23

Follow-up time (years) 5.4 ± 2.4 6.3 ± 2.4 n.s.

Age (years) 40.0 ± 6.7 42.6 ± 5.6 0.082

Sex (% male) 51 (46 %) 8 (35 %) n.s.

Weight (kg) 77.6 ± 13.3 75.0 ± 12.5 n.s.

BMI (kg/m2) 25.1 ± 3.4 25.5 ± 3.6 n.s.

Waist (cm) 88.6 ± 10.4 89.7 ± 10.9 n.s.

Waist/hip circumference ratio 0.86 ± 0.09 0.88 ± 0.09 n.s.

Systolic blood pressure (mmHg) 118 ± 11 120 ± 12 n.s.

Diastolic blood pressure (mmHg) 75 ± 9 75 ± 8 n.s.

Fat percent (%) 25.2 ± 8.1 28.0 ± 6.2 n.s.

High heredity for T2D 61 (55 %) 15 (63 %) 0.012

High physical activity 36 (34 %) 9 (41 %) n.s.

Currently smoking 11 (10 %) 2 (9.0 %) n.s.

Fasting plasma glucose (mmol/L) 4.8 ± 0.4 5.0 ± 0.7 0.029

Fasting plasma insulin (pmol/L) 48.4 ± 31.2 56.0 ± 36.3 n.s.

OGTT 2 h plasma glucose (mmol/L) 5.8 ± 1.4 7.4 ± 1.5 <0.0001

HbA1c (mmol/mol) 32.2 ± 2.2 33.5 ± 3.2 0.029

M-value (GIR/lbm/min 30 min) 13.3 ± 3.8 10.9 ± 3.7 0.010

M/I (GIR/lbm/min/pmol/L) 0.02 ± 0.01 0.02 ± 0.01 n.s.

IVGTT AIR (pmol/L x min) 3307 ± 1998 2803 ± 2153 n.s.

IVGTT LIR (pmol/L x min) 7552 ± 4085 9011 ± 5482 n.s.

HOMA-IR (mmol x mU/L2) 10.3 ± 7.2 12.8 ± 9.3 n.s.

Serum cholesterol (mmol/l) 4.8 ± 0.9 5.3 ± 0.8 0.030

Serum HDL (mmol/L) 1.6 ± 0.4 1.6 ± 0.4 n.s.

Serum triglycerides (mmol/L) 1.0 ± 0.5 1.1 ± 0.4 n.s.

Serum LDL (mmol/L) 2.8 ± 0.8 3.1 ± 0.8 0.079

Serum ALT (μkat/L) 0.43 ± 0.25 0.46 ± 0.35 n.s.

Serum CRP (mg/L) 1.21 ± 2.21 1.08 ± 1.18 n.s.

Serum creatinine (μmol/L) 87 ± 15 93 ± 22 n.s.

Adipocyte cell size (μm) 93.3 ± 12.5 98.0 ± 13.2 n.s.

Serum adiponectin μg/mL) 9.1 ± 4.6 8,4 ± 3,9 n.s.

Il-6 (ng/mL) 43.5 ± 21.7 55.8 ± 19.2 0.085

NGT = normal glucose tolerance. IGT = impaired glucose tolerance. T2D = type 2 diabetes mellitus. IL-6 = interleukin-6. Data are means ± standard deviation.
P-values below 0.1 are given numerically, otherwise stated as not significant (n.s.)
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adiponectin did not reach statistical significance in our
study population.
It is important to note, that in this study we have studied

subcutaneous adipose tissue biopsies, as opposed to visceral
adipose tissue. The latter has been extensively studied and
there is consensus today regarding its major role in the
development of cardiometabolic disease, including T2D.
Large subcutaneous adipose tissue storages have been
proposed to be less indicative of insulin resistance and
its associated metabolic derangements [33]. However,
as shown by Gustavson et al., an inability to store ex-
cess energy subcutaneously is associated with the accu-
mulation of visceral fat, and the subcutaneous adipose
tissue function thus plays a role in the development of
ectopic fat storage [28]. In addition to the conclusion
drawn from subcutaneous biopsy data in this study, we
found that waist circumference and WHR both tended
to be larger, however not reaching statistical signifi-
cance, in the group that developed IGT/T2D than in
the individuals with NGT at follow-up (shown in Table 3
and Table 5), i.e. indicating larger visceral adipose tis-
sue storage.

In this study, we could also show that insulin secretion
is correlated with two important markers of adipose tissue
dysfunction, adipocyte hypertrophy and reduced circulat-
ing adiponectin levels, suggesting a potential cross-talk be-
tween adipose tissue and beta-cell function, potentially
through endocrine regulation by one or several secreted,
that was recently proposed by Cantley et al. [34].
Attention has been brought to the patterns of weight gain

prior to the development of T2DM by The Whitehall II
Cohort study [35]. The majority of individuals that devel-
oped T2DM had only a modest weight gain during the
study period, but were overweight during the entire 18 years
follow-up. Two other, more extreme weight gain patters
were identified and all three groups increased significantly
more compared to the control group not developing T2D.
FDR are at increased risk of developing overweight or obes-
ity and are, for a given BMI, more likely to display an in-
creased risk profile for both T2D and cardiovascular disease
compared to healthy controls without family history of
T2D [36]. Higher body fat percentage and waist hip ratio
were the strongest predictors for development of IGT and
T2D from normoglycaemia at baseline.

Table 6 Logistic regression to predict the probability of developing IGT or T2D. Additional adjustments were done and are presented in Table 7
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Interestingly, high physical activity was a risk factor of
IGT/T2D in this cohort, which may seem counterintui-
tive at first. However, our research group is working on
a cross-sectional study on the same cohort of individ-
uals, comparing them to a control group without hered-
ity for T2D, and the preliminary results show that high
physical activity is more prevalent in the FDR group
than among the controls. This could be due to a selec-
tion bias, where the FDR recruited from the general
population are aware of their cardiometabolic risk pro-
file, and thus succumb to a physically active lifestyle
to minimize the risk of disease. However, Mozaffarian
et al. showed a u-shaped relationship between physical
and the risk of atrial fibrillation, reminding about the
complex associations between lifestyle and cardiometa-
bolic disease [37].
A limitation of this study could be the measurements

used to assess dyslipidemia. We evaluated neither apoli-
poprotein subtypes, nor size of lipoprotein particles,
which could have altered the conclusions we reached,
i.e., that measures of dyslipidemia did not significantly
differ between normoglycemic FDR and FDR developing

IGT/T2D. Studies have suggested that, e.g., serum lipo-
protein[Lp](a) levels in subjects with an apparently advan-
tageous blood lipid profile, could predict cardiometabolic
disease, possibly also mediated by gender differences in
autoimmune activation, and thus of interest to investigate
in this cohort [38, 39].
Finally, two possible confounders are important to

mention. We did not collect data on the individuals’
dietary habits, which could possibly have affected the
associations studied here. Another possible confounder
is the significantly longer follow-up time in the group
that developed IGT/T2D than in the group that
remained NGT. The IGT/T2D were thus slightly older
than the NGT subjects, and as age is an important risk
factor for T2D, the difference in follow-up time could
have affected the metabolic differences studied. We
also did not stratify our study groups by gender. As
gender-specific differences have been demonstrated in
several of the parameters measured in this study, this
might have affected our results. However, we did account
for gender differences when performing the multiple re-
gression analysis.

Table 7 Logistic regression to predict the probability of developing IGT or T2D
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Conclusion
In conclusion, individuals with a family history of type 2
diabetes and deteriorating glucose tolerance, showed in-
sulin resistance as well as beta cell and possibly also adi-
pose tissue dysfunction, emphasizing the multifactorial
pathophysiology in the development of IGT and T2D.
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