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Abstract

Background: Hypoglycemia is the main side effect of intensified insulin therapy in type 1 diabetes and recognized
as a limitation in achieving glycemic targets. Patients with impaired awareness of hypoglycemia have a threefold to
sixfold increased risk of severe hypoglycemia. Real-time continuous glucose monitoring may help patients with
type 1 diabetes to achieve better glycemic control with less hypoglycemic episodes. Accordingly, one may
hypothesize that particularly type 1 diabetes mellitus patients with impaired awareness of hypoglycemia will profit
most from this technology with improvements in their quality of life. However, this has not yet been established.
This trial aims to study the effect of real-time continuous glucose monitoring on glycemia and quality of life
specifically in type 1 diabetes mellitus patients with established impaired awareness of hypoglycemia.

Methods/design: This is a two-center, randomized, cross-over trial with a 12-week wash-out period in between
intervention periods. A total of 52 type 1 diabetes mellitus patients with impaired awareness of hypoglycemia
according to Gold et al. criteria will be randomized to receive real-time continuous glucose monitoring or blinded
continuous glucose monitoring for 16 weeks. After a wash-out period, patients will cross over to the other intervention.
The primary outcome measure is time spent in euglycemia. Secondary outcomes include (diabetes-specific) markers of
quality of life and other glycemic variables.

Discussion: It remains unclear whether patients with type 1 diabetes and impaired awareness of hypoglycemia benefit
from real-time continuous glucose monitoring in real-life. This study will provide insight into the potential benefits of
real-time continuous glucose monitoring in this patient population.

Trial registration: Clinicaltrials.gov: NCT01787903.
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Background
Type 1 diabetes mellitus (T1DM) constitutes about 10-
15 % of total diabetes rates and its incidence has been
increasing worldwide at an alarming rate of 3-5 % per year
[1]. T1DM is associated with an increased risk of micro-
vascular and macrovascular co-morbidities. The Diabetes
Control and Complication Trial/Epidemiology of Diabetes
Interventions and Complications (DCCT/EDIC) studies
have shown that intensive versus conventional glycemic
control results in a reduction of microvascular [2] but also
macrovascular complications [3]. However, the DCCT also
demonstrated that intensive treatment associates with a
considerably increased rate of hypoglycemia [2]. With
incidences of approximately 2 per patient per week [4–6]
for mild (i.e. self-treated) hypoglycemia, and 0.1-1.5 per
patient year [2, 5–9] for severe hypoglycemia (SH),
hypoglycemia is both the main limitation in achieving
glycemic targets and the main side effect of intensified
insulin therapy in T1DM [10, 11]. The American Diabetes
Association (ADA) defines SH as an event requiring
assistance of a third party, with symptoms of neuroglyco-
penia and recovery of neurological symptoms after restor-
ation of plasma glucose [12].
Hypoglycemia is both a physical and psychological

burden [13, 14]. It can interfere with every aspect of daily
life, such as sleep, exercise, driving or otherwise travelling,
but also social interactions and even employment [13].
Patients worry about having episodes of SH or getting the
late complications of T1DM [6], and there is always the
possibility of a hypoglycemic episode leading to a coma
[6]. Recurrent hypoglycemia may promote the develop-
ment of impaired awareness of hypoglycemia (IAH) by
decreasing the glycemic threshold in the brain required
for the activation of the autonomic system [15]. Conse-
quently, by the time the glucose level is low enough to
elicit symptoms, patients fail to recognize them due to
neuroglycopenia. To date, no consensus on a satisfactory
definition of IAH exists. We defined IAH as the dimin-
ished ability to recognize the onset of hypoglycemia [14].
Hypoglycemia awareness can be assessed by using self-
rating questionnaires. The Gold method consists of one
question: “do you know when hypoglycemia is commen-
cing?”. The state of hypoglycemia awareness is then
assessed by using a 7-point visual analogue scale, with 1
representing “always aware” and 7 representing “never
aware”. A score of ≥4 suggests impaired awareness of
hypoglycemia [16]. The Clarke method consists of eight
questions identifying the respondents exposure to
episodes of (mild and severe) hypoglycemia and examin-
ing the glycemic threshold for hypoglycemia. Impaired
awareness of hypoglycemia is implied if the respondent
has a score of ≥4 [17]. Both scoring systems show good
performance in adults [18]. Impaired awareness of
hypoglycemia renders patients at a threefold to sixfold

increased risk of SH which considerably hampers their
quality of life [13, 16, 19]. In addition, hypoglycemia can
be fatal, with hypoglycemia mortality estimates ranging
from 4 to 10 percent of deaths of patients with type 1
diabetes [20, 21]. Furthermore, a recent observational
study showed that T1DM patients with an glycated
hemoglobin level of 6.9 % or lower had a twice increased
risk of death from any cause and cardiovascular causes
compared with matched controls [22].
In 2006, real-time continuous glucose monitoring

(RT-CGM) was introduced to assist patients in their self-
management of blood glucose [23]. Real-time continuous
glucose monitoring systems measure interstitial glucose
levels and provide this information every five or ten
minutes, with a delay of approximately 8 to 15 minutes
[24–26]. The added value lies in the display of trends and
alarms that can be set to warn for impending hypo- or
hyperglycemia [27, 28]. RT-CGM is associated with an
improvement of glycemic control [27, 29–41] and shorter
duration of hypoglycemic episodes [42–44]. However, the
effect of conventional RT-CGM (i.e. without automated
insulin suspension) specifically in patients with IAH has
not yet been established in a real life setting [45]. In most
studies either recent severe hypoglycemia was among the
exclusion criteria [29] or the frequency of severe
hypoglycemia at baseline was not mentioned [37, 40, 46].
Studies done in subjects with normal hypoglycemia aware-
ness already indicate that use of RT-CGM might improve
the impact of T1DM on daily life [28] and might increase
treatment satisfaction [47], although an effect on the fear
of hypoglycemia is not apparent [48]. Since experiencing
the issues mentioned above might especially be the case
for patients with IAH, it is not unlikely that use of RT-
CGM might improve the quality of life in those patients.
This trial aims to study a wide range of effects of RT-

CGM specifically in T1DM patients with established
IAH, regardless of baseline HbA1c. We hypothesize that
the use of RT-CGM, relative to a control intervention
using masked CGM, will result in improvement of time
spent in euglycemia and quality of life in T1DM patients
with IAH.

Methods/design
Design
This is a two-center, randomized, cross-over trial with a
12-week wash-out period in between intervention periods
(Fig. 1). Ethical approval has been granted by the medical
ethical committee of the VU University Medical Center
(VUMC).

Recruitment
Subjects will be recruited from the outpatient clinic of the
VUMC, Amsterdam and the Medical Center Haaglanden
(MCH), The Hague, The Netherlands, from outpatient
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clinics at affiliated hospitals, but also from regional hospi-
tals and via advertisements in local newspapers. Responders
will be sent written extensive patient information. Written
informed consent will be obtained from the subjects prior
to any trial related procedure.

Study population
Fifty-two subjects with T1DM and IAH will be enrolled.
Because patients with IAH often are already in good to
moderate control in terms of HbA1c, patients will be
included regardless of their HbA1c.

Inclusion criteria

– T1DM, diagnosed according to ADA criteria [49]
regardless duration.

– Use of multiple daily injections of insulin or
continuous subcutaneous insulin infusion.
(Participants may not change their treatment
method during the study.)

– Age between 18 and 75 years (inclusive).
– IAH according to the questionnaire by Gold et al.

[16].
– Performing self-monitored blood glucose

measurements (SMBG) at least 3/day or 21/week.

Exclusion criteria

– History of (recent) major renal, liver, or (ischemic)
heart disease (including cardiac conduction
disorders).

– Current untreated proliferative diabetic retinopathy.
– Current (treatment for) malignancy.
– Current use of non-selective beta-blockers.
– Current psychiatric disorders, including

schizophrenia, bipolar disorder, anorexia nervosa or
bulimia nervosa.

– Substance abuse or alcohol abuse (men >21 units/
week, women >14 units/week).

– Current pregnancy or intention to conceive.
– Current use of RT-CGM other than for short term

(i.e. diagnostic use or use shorter than 3 consecutive
months).

– Hearing or vision impairment hindering perceiving
of glucose display and alarms, or otherwise
incapable of using a (RT-)CGM, in the opinion of
the investigator.

– Poor commandment of the Dutch language or any
(mental) disorder that precludes full understanding
of the purpose and instructions of the study.

– Participation in another clinical study.
– Known or suspected allergy to trial product or

related products.

Study plan
A detailed overview of study visits, telephone consultations
and procedures is given in Additional file 1. At each visit, a
recent history will be taken, including e.g. complaints,
adverse events, changes in medication treatment regime
and the occurrence of SH (i.e. requiring assistance of a third
party). Weight and vital signs will be measured at each visit.
Outcome measurements will be performed at baseline and
after each 16-week intervention phase (Fig. 1).

Screening
Hypoglycemia awareness will be assessed using the ques-
tionnaire developed by Gold et al. and by Clarke et al.
[16, 17]. The frequency and severity of severe
hypoglycemia will be assessed using the self-report ques-
tionnaire according to Langan et al. [50]. Subsequently, a
complete medical and socio-economic history will be
taken and a complete physical examination will be
performed. Participants will be examined for the presence
of diabetes-related (microvascular) complications. Thus,

Fig. 1 General study plan
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plasma creatinine, calculated estimated glomerular filtra-
tion rate (eGFR) and albumin-creatinine ratio (ACR) in a
random urine sample will be measured to evaluate
diabetic nephropathy [51, 52]. The presence/severity of
diabetic sensorimotor polyneuropathy will be quantified
by the Modified Toronto Clinical Scoring System [53]. For
the assessment of vibration sense, the vibration perception
threshold will be quantified using a neurothesiometer
[54]. The presence/severity of diabetic retinopathy (DRP)
will be assessed based on the relevant medical history and
a recent (<6 months) evaluation by the patient’s ophthal-
mologist. In the absence of this information, patients will
be either requested to visit their ophthalmologist prior to
study onset or they will be referred for fundus photog-
raphy [55]. Blood will be collected to ascertain in- and
exclusion criteria and for baseline measurement.

Run-in phase
A 5-week run-in phase, starting after inclusion, will be used
to allow for study effects and enable diabetes- and study-
related education. All participants will receive approxi-
mately 30 minutes of individual education in the principles
of diabetes management, including basic principles of
standardized SMBG, glucose fluctuations, insulin and
carbohydrates, hyper- and hypoglycemia, impaired aware-
ness of hypoglycemia and RT-CGM. In case a participant
does not use the technique of carbohydrate counting, no
education on this subject will be given in order to prevent
confounding. Participants will be equipped with a masked
CGM device to be worn for two weeks to gather baseline
data and to familiarize them with longer-term wearing of
this type of device. During follow-up visits, there will be an
ongoing evaluation of diabetes self-management and know-
ledge of diabetes management, as this is part of standard
diabetes care. A test of knowledge will not be used.

Intervention phase
Randomization
After successful participation in the run-in phase, partic-
ipants will be randomized, using block randomization
(allocation 1:1), to the first intervention period. A sealed
envelope for each participant will be drawn and opened
by qualified study staff. In addition, the block size will be
determined by the institutional trial pharmacist. Study
staff and participants will not be blinded for treatment
order, as this is an open intervention study. When allo-
cated to RT-CGM, participants will receive additional
education on how to use RT-CGM and the accompany-
ing specialized software. Participants will be asked to
upload their RT-CGM-data before each follow-up visit.
When allocated to masked CGM, participants will
continue to wear their CGM device from the run-in
phase. Participants are encouraged to wear the assigned
study devices continuously.

Follow-up visits and telephone consultations
During the intervention periods there will be monthly
follow-up visits and telephone consultations involving
inquiry after e.g. actual complaints/symptoms, episodes of
(severe) hypoglycemia, study device use and related
technical issues, and medication using a checklist. During
both intervention periods, research physicians will guide
participants in concordance with the ADA Standards of
Medical Care in Diabetes [56]. The guidance will be equal
during both intervention periods. During the visits, ther-
apy adjustments will be discussed and logged, based on
RT-CGM-data in the RT-CGM group or SMBG-data in
the masked CGM group. No treatment or insulin titration
protocol will be used, neither will SMBG use be standard-
ized, in order to avoid additional interventions.

Wash-out phase
After the first intervention phase, participants will enter
a 12-week wash-out phase, during which they will only
receive two-weekly telephone consultations for taking
recent histories and monitoring of potential adverse
events. At the end of the wash-out period, general
diabetes and CGM education will be given similar to the
first run-in phase. Also, participants will start to wear
masked CGM again for two weeks to gather baseline
data for the second intervention period.

Endpoints
Primary endpoint
The mean difference in time spent in euglycemia (intersti-
tial glucose range >3.9 mmol/L - ≤10.0 mmol/L), expressed
as hours/day between the two intervention periods. The
specific ranges of euglycemia are based on the definition of
the ADA and comparing literature [12, 44].

Secondary endpoints

– (Diabetes-specific) markers of quality of life, as assessed
with questionnaires covering: diabetes-related
emotional distress (PAID-5 (Cronbach’s α = 0.86) [57]),
fear of hypoglycemia (HFS-2 (Cronbach’s α = 0.94) [58,
59]), diabetes self-efficacy (CIDS (Cronbach’s α = 0.94)
[60]), generic health-status (EQ5D (Cronbach’s
α = 0.73) [61, 62]) and emotional well-being
(Cronbach’s α = 0.82) (WHO-5 [63–65]).

– Other glycemic variables, including HbA1c, time
spent in hypo- and hyperglycemia ranges, frequency
of severe (i.e. requiring assistance of a third party)
and mild (i.e. self-treated) hypoglycemia (assessed by
analyzing (RT-)CGM data) and duration of
hypoglycemia.

– Changes in hypoglycemia awareness score according
to Gold et al. [16].
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– Glycemic variability. Glucose variability (defined as
inter-day and intraday glycemic variability), will be
calculated as Mean Of Daily Differences and
Continuous Overall Net Glycemic Action, using all
(RT-)CGM values during the 16 week intervention
period [66, 67].

Exploratory endpoints

– Autonomic nervous system function. The
functioning of the autonomic nervous system will be
indirectly assessed by analysing heart rate variability
and blood pressure changes during four of the five
Ewing’s standardized cardiovascular reflex tests: the
Valsalva ratio, the 30:15 ratio on standing up, the
maximum-minimum heart rate during deep
breathing and postural blood pressure change
[68–71]. The heart-rate variability will be assessed
using non-invasive, automated beat-to-beat blood
pressure and ECG recordings (Nexfin®, BM Eye,
Amsterdam, the Netherlands). that will be analyzed
by dedicated software, automatically calculating
HRV indices for both the time-domain and
frequency-domain variables. Quality control will be
performed by research staff by visual inspection of
the data. Data will be excluded from analysis if >5 %
of the measured beats are extrasystoles. No
agreement exists on the number of abnormal
cardiovascular tests required to reach the diagnosis
of cardiovascular autonomic neuropathy [71].
However, an abnormality of more than one test, on
more than one occasion, is indicative of
(cardiovascular) autonomic dysfunction [71, 72].

– Duration of sensor wear.
– Changes in hypoglycemia awareness score according

to Clarke et al. [17].
– Satisfaction with use of RT-CGM, assessed by the

CGM-SAT questionnaire [73].

Study devices
The MiniMed Paradigm® Veo™ System (Medtronic,
Northridge, CA) will be used as RT-CGM device. The
system consists of a continuous Enlite™ glucose sensor, a
MiniLink™ transmitter and the Paradigm® Veo™ System
[74, 75]. The sensor is a membrane-covered enzyme
coated electrode placed through the skin into the subcuta-
neous space using an auto-insertion device. This sensor
has to be changed every 6 days . The wireless MiniLink™-

transmitter is a small rechargeable device that is
connected to the glucose sensor and sends glucose data
wirelessly to the monitor every 5 minutes, 24 hours a day.
The monitor shows real-time glucose measurements and
provides information regarding changes in glucose levels
(trends). Calibration is required every 12 hours. The

system allows to set alarms, i.e. alarms for low and high
glucose limits, as agreed with the health-care provider, at
which the system should alert the patient whenever
glucose values are approximating or exceeding these pre-
set values. The low-glucose limit during this trial will be
pre-set at 4,5 mmol/L and cannot be lowered in order to
prevent hypoglycemia. Also, accuracy of glucose sensors
decreases in hypoglycemic ranges [76, 77]. Low-glucose
suspension function will not be used. Finally, the system
shows participants their real-time glucose values and
patterns, and allows for adjustment of treatment and/or
lifestyle accordingly.
The masked CGM device that will be used is the iPro™2

Continuous Glucose Monitor (Medtronic, Northridge,
CA), which also uses the Enlite™ glucose sensor [74, 75].
Masked CGM- and SMBG-data must be uploaded every
week for the purpose of (retrospective) calibration of the
iPro™2. Participants will be blinded to the CGM-data. The
investigators will review the CGM-data for quality based
on duration of sensor wear, number of sensor values,
accuracy (mean absolute difference), number of valid
calibrations. In case of missing data due to low quality
CMG-data, the intervention phase will be extended.

Statistical considerations
Analysis
Intention to treat analysis will include all randomized
subjects, including drop-outs. Per-protocol analysis will
include only subjects who have completed at least the first
four weeks of the first intervention period. The total evalu-
able sample will consist of all intention-to-treat subjects
who complete both intervention periods according to the
protocol. Evaluation of (RT-)CGM data will not be per-
formed in an assessor-blinded way. Quality control of the
(RT-)CGM data and data analysis will be performed by the
same study staff.
Unless otherwise stated, all statistical tests will be

conducted at a 2-tailed significance level of 0.05. Accord-
ing to their distribution, the various parameters will be
expressed as mean (± SD), median (interquartile range) or
number (%). Residual effects will be ascertained before
further analysis will be performed using non-parametric
tests [78, 79]. The primary endpoint, i.e. mean difference
in time spent in the euglycemic range, expressed as hours/
day, during the RT-CGM versus the masked CGM phases,
will be analyzed per month using mixed model analysis, in
order to show a possible effect over time. In the mixed
model analysis, time spent in euglycemia will be used as
dependent variable. Independent variables will include:
treatment arm, interaction between RT-CGM and CGM,
and time in months since start of the intervention. Base-
line CGM data, gathered during the run-in phase, will be
implemented as covariate. In case of carry-over effects
and an unequal distribution of treatment method (MDI /
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CSII) over the intervention orders (RT-CGM – CGM /
CGM – RT-CGM), treatment method will also be included
as covariate. Post hoc tests will be corrected using Bonfer-
roni correction. If additional testing will reveal potential
confounders, adjustments for these factors may necessitate
analysis of covariance (ANCOVA). By using mixed model
analysis, unequal use of the devices will not necessitate
correction, as long as missing data can be considered to be
at random.

Carry-over
To date, little is known about the possible carry-over ef-
fects of RT-CGM. Yet such an effect would seem logical
considering the expected educational effect of RT-CGM
in e.g. the ability of participants to recognize patterns in
otherwise undetected hypo- or hyperglycemic events
and adjust insulin therapy accordingly. To minimize
carry-over effects, a washout period of 12 weeks will be
implanted. We consider a 12-week period sufficient for
the behavioral modification component to wear off.
Additionally, a 12-week time period allows realistic
HbA1c changes resulting from patients self-management
during that same period to establish a reliable baseline
for the second intervention period.

Sample size calculation
Since current RT-CGM technology may show relatively
poor performance in the hypoglycemic range [80], we chose
mean time (hours/day) spent in euglycemia, i.e. glucose
values ranging >3.9 - ≤10.0 mmol/L, during the study
period as our primary end-point. A previously published
intervention study using RT-CGM demonstrated a differ-
ence of 1.5 hours in time spent in euglycemia between the
RT-CGM and control group [44]. In order to detect a
difference of 1.5 hours (6.25 % from 24 hours) in time spent
in euglycemia, assuming a standard deviation of 3.5, alpha-
level of 0.05, power of 80 %, a drop-out rate of 15 % and a
correlation of 0.5 between repeated measures (which is due
to the cross-over design of the study in which subjects
serve as their own control), a sample size of 52 patients will
be needed.

Discussion
Although it seems obvious that T1DM patients with IAH
could potentially benefit from RT-CGM, the effect of
conventional RT-CGM (without automated insulin suspen-
sion) has not yet been established in an ambulatory setting.
A hyperinsulinemic hypoglycemic clamp study of Ly et al.
showed that 4 weeks of RT-CGM improved epinephrine
responses in young T1DM patients with IAH, suggesting
that IAH can be restored in adolescents by using RT-CGM
[81]. Furthermore, the first observational study performed
in patients with IAH demonstrated a clear reduction of SH
with RT-CGM use [82], addressing the need for further

intervention studies in patients with IAH. A randomized
controlled trial of Little et al. demonstrated that IAH can
be restored and SH prevented using existing technology
[45]. In contrast to expectations, RT-CGM was not superior
over self-monitoring of blood glucose by finger prick. How-
ever, during this trial, strict insulin titration protocols where
used, which may not reflect real-life diabetes management.
Although Ly et al. showed that sensor-augmented insulin
pump therapy with automated insulin suspension reduced
the frequency of SH significantly in T1DM patients with
IAH [83], this reduction lost significance when 2 outliers,
whose rates of hypoglycemia were higher at baseline, were
removed from analysis. Hence, it remains unclear whether
T1DM patients with IAH benefit from conventional RT-
CGM in real-life.
The study protocol poses some limitations. Hypoglycemia

awareness will be assessed using the subjective self-rating
questionnaire of Gold et al. [16]. Objective assessments of
hypoglycemia awareness, i.e. by using CGM data or by
inducing hypoglycemia in a laboratory setting, will not be
used. Self-reported hypoglycemia awareness has shown to
be reliable in previous studies [16–18, 84] and reflects
clinical practice. Also, continuous use of RT-CGM is
encouraged, but not mandatory, which could influence the
effect of RT-CGM on glycemia [40]. Furthermore, the low
alarm value used in this trial is pre-set at 4,5 mmol/L in
order to prevent hypoglycemia. In clinical practice however,
alarm values should be evaluated and set individually.
Moreover, the decrease in sensor accuracy in hypoglycemic
ranges could compromise the analysis of glycemia [76, 77].
Finally, participants already using an insulin pump are
offered a second device, which could diminish compliance
with regards to logging SMBG values, meals, insulin and
activities. This could affect the value of interpreting the RT-
CGM-data retrospectively.
With this study, we expect to gain a better understanding

of the potential benefits of RT-CGM technology in a
sample of patients with T1DM complicated by impaired
hypoglycemia awareness. Also, the study is likely to yield
clinically relevant information to help further improve
targeted intervention strategies to help these patients
improve their diabetes self-management and quality of life.

Additional file

Additional file 1: Table S1. Overview of visits, telephone consultations
and outcome assessments. (XLS 34 kb)
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