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Abstract

Background: Continuous glucose monitoring (CGM) has revolutionised diabetes management. CGM enables
complete visualisation of the glucose profile, and the uncovering of metabolic ‘weak points’. A standardised
procedure to evaluate the complex data acquired by CGM, and to create patient-tailored recommendations has
not yet been developed. We aimed to develop a new patient-tailored approach for the routine clinical evaluation
of CGM profiles. We developed a metric allowing screening for profiles that require therapeutic action and a method
to identify the individual CGM parameters with improvement potential.

Methods: Fifteen parameters frequently used to assess CGM profiles were calculated for 1,562 historic CGM profiles
from subjects with type 1 or type 2 diabetes. Factor analysis and varimax rotation was performed to identify factors
that accounted for the quality of the profiles.

Results: We identified five primary factors that determined CGM profiles (central tendency, hyperglycaemia,
hypoglycaemia, intra- and inter-daily variations). One parameter from each factor was selected for constructing
the formula for the screening metric, (the ‘Q-Score’). To derive Q-Score classifications, three diabetes specialists
independently categorised 766 CGM profiles into groups of ‘very good’, ‘good’, ‘satisfactory’, ‘fair’, and ‘poor’
metabolic control. The Q-Score was then calculated for all profiles, and limits were defined based on the categorised
groups (<4.0, very good; 4.0–5.9, good; 6.0–8.4, satisfactory; 8.5–11.9, fair; and ≥12.0, poor). Q-Scores increased significantly
(P <0.01) with increasing antihyperglycaemic therapy complexity. Accordingly, the percentage of fair and poor profiles
was higher in insulin-treated compared with diet-treated subjects (58.4% vs. 9.3%). In total, 90% of profiles categorised as
fair or poor had at least three parameters that could potentially be optimised. The improvement potential of
those parameters can be categorised as ‘low’, ‘moderate’ and ‘high’.

Conclusions: The Q-Score is a new metric suitable to screen for CGM profiles that require therapeutic action.
Moreover, because single components of the Q-Score formula respond to individual weak points in glycaemic
control, parameters with improvement potential can be identified and used as targets for optimising patient-
tailored therapies.
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Background
Continuous glucose monitoring (CGM) is a new area in
diabetes care and management [1-3]. The advantage of
CGM is that daily glucose profiles can be visualised
completely and precisely, allowing the identification of
‘weak points’ in glycaemic control. Each CGM record
contains a wealth of data, and 48 parameters are
currently available for the analysis of glucose profiles
[4-10]. However, the analysis of CGM has not yet been
standardised [10-12]. Studies by the Juvenile Diabetes
Research Foundation Continuous Glucose Monitoring
Study Group employed variables that described glucose
levels (time/day above or below the target range), vari-
ability (standard deviation [SD], coefficient of variation
[CV], mean amplitude of glycaemic excursions [MAGE],
mean absolute rate of change [MARC]), and summary
values for hypo- and hyperglycaemia (area under the
curve for glucose [AUCG], low blood glucose index
[LBGI], and high blood glucose index [HBGI]) [5,13-15].
Accordingly experts have suggested the use of parameters
that allow the assessment of target range, glucose expos-
ure, glucose variability, and hyper- and hypoglycaemia
[10-12].
Mean blood glucose (MBG) is frequently used to

reveal central glycaemic tendency. For evaluating glucose
variability, a variety of parameters have been described,
including SD, range, MAGE, the continuous overall net
glycaemic action (CONGA), and the mean of daily
differences (MODD) [11-13,15-20]. Hypo- and hypergly-
caemic episodes are assessed based on the time spent
and AUCG of CGM segments that appear outside the
target range, where hypoglycaemia is defined as time
outside the glucose target range tG <3.9 and AUCG <3.9,
and hyperglycaemia is defined as tG >8.9 and AUCG >8.9.
Risk scores for hypo- or hyperglycaemia are based on
the LBGI and HBGI, respectively [19,20]. The glycaemic
risk assessment for diabetes equation (GRADE) was also
developed for assessing glycaemic risk [16]. These pa-
rameters are valuable for clinical research. However, they
are often impractical for use by the clinician in routine
diabetes care.
Table 1 Patient demographics and characteristics

T2DM

Parameter Diet OHA

(n = 120) (n = 513)

Age [years] 64.9 ± 8.2 65.7 ± 8.5

Gender [f/m] 33 / 87 174 / 339

DM duration [years] 3 (2–6) 6 (3–11)

BMI [kg/m2] 29.3 ± 4.1 30.5 ± 5.2

HbA1c [%] 6.3 ± 0.7 6.8 ± 0.8

Data represent the mean ± SD or median (interquartile range) for each category.
OHA, oral hypoglycaemic agent; T1DM, type 1 diabetes mellitus; T2DM, type 2 diab
Recent studies addressed the need for a single metric
that allows for the assessment of short-term glycaemic
control using CGM, similar to the way in which glyco-
sylated haemoglobin (HbA1c) allows for the assessment
of long-term glycaemic control [21-23]. Rawlings et al.
[21] developed a graphical user interface to evaluate
CGM profiles (CGM-GUIDE©) based on quantitative
measures of glucose variability. Thomas et al. [22]
described the ‘Glucose Pentagon’, which combines
different summary measures derived from CGM
profiles (including parameters describing glycaemic
variability) and HbA1c for assessing glycaemic control.
Marling et al. [23] developed a ‘consensus perceived
glycaemic variability metric’ that captures the gestalt
perceptions of experienced physicians using an auto-
matic algorithm. However, none of these new methods
has yet been introduced into routine diabetes care
regimens.
The aim of this study was to develop a metric that

facilitates objective assessments of glucose profiles and
screening for profiles that require therapeutic action.
Moreover, in order to allow patient-tailored therapy, we
aimed to develop an automated method for identifica-
tion of improvement potential in a given profile.

Methods
Patient data
CGM profiles and self-control data were recorded in
earlier studies [24-28], which were approved by the
Regional Ethics Review Board of the University of
Greifswald (Germany). All included subjects provided
informed consent to participate in CGM and data ana-
lysis. Data from 1,562 subjects (females/males; 499/
1,063) with type 1 and type 2 diabetes (n = 48 and n = 1514,
respectively) were analysed (Table 1). The mean age was
65.8 ± 9.0 years (range 39–89); duration of diabetes 10 ±
9.1 years (range 1–51); body mass index (BMI) 30.9 ±
5.4 kg/m2 (range 18.5–55.4). Subjects received diet-
based diabetes therapy (n = 120), oral hypoglycaemic
agents (OHA; n = 513), a combination of OHA and
insulin (n = 439), or insulin alone (n = 490). The
T1DM

OHA + Insulin Insulin Insulin

(n = 439) (n = 442) (n = 48)

65.1 ± 8.1 68.1 ± 9.2 52.9 ± 10.4

136 / 303 135 / 307 21 / 27

12 (8–17) 16 (9–23) 31 (21–36)

32.6 ± 5.5 30.7 ± 5.2 26.0 ± 3.8

7.2 ± 1.0 7.1 ± 1.0 7.6 ± 1.0

etes mellitus.
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carbohydrate intake was 142.8 ± 37.2 (range 48–336) g
carbohydrates/d. The mean HbA1c was 7.0 ± 0.9%
(range 4.5–13.4; 53 ± 10 mmol/mol [range 26–123]).

Continuous glucose monitoring
CGM profiles (72 h) were acquired with the Medtronic
Gold system (Medtronic Diabetes, Northridge, CA,
USA) according to the manufacturer’s instructions.
CGM was performed in an outpatient setting under
daily-life conditions. The quality of CGM profiles was
assessed on three subsequent days, and the measures
were averaged for analyses. All CGM profiles were
assessed using the following parameters: MBG, median
glucose level (median), SD, range, MAGE, CONGA over
a 6-h period, MODD, interquartile range (IQR), tG and
AUCG above or below the target range from 3.9 to
8.9 mmol/l, risk scores for LBGI and HBGI, and GRADE
[16-20].

Factor analysis
The factor analysis [29,30] was conducted with the
FACTOR procedure available in PASW Statistics 17
(SPSS Inc., Chicago, IL, USA). Initially, all included
parameters were normalised using the z-score and the
correlation between all variables was determined. The
number of components to be retained was first based
on a scree plot. A calculation with an additional factor
provided a further independent and interpretable
factor.
The calculation of the Kaiser–Meyer–Olkin (KMO)

measure resulted in a KMO of 0.821, which indicated
that the factor model was appropriate and the sampling
was highly adequate. A varimax (orthogonal) rotation
was used to obtain a set of independent, interpretable
factors. The resulting factor pattern was interpreted with
the use of factor loadings >0.5.

Categorisation of CGM profiles
A randomly selected subset from all CGM profiles (n = 766)
was independently categorised into groups of ‘very good’,
‘good’,‘satisfactory’,‘fair’, and ‘poor’metabolic control, by three
diabetes specialists. The specialists had access to both the
CGM profiles and the patient records that indicated the dia-
betes type, diabetes duration, and types of therapy associated
with each CGM.

Statistical methods
All analyses were performed with PASW Statistics 17.
Results are expressed as mean ± SD or as medians and
IQR. Analysis of variance was used to assess differences
between groups. The strength of the dependence
between two continuous variables was assessed with the
Pearson’s correlation coefficient and between ordinal
variables with Kendall’s tau-b correlation. The weighted
Cohen’s kappa score [31] was used to assess the inter-
rater reliability of the categorisation of the CGM pro-
files between diabetes specialists and between Q-Score
and diabetes specialists. The reliability (concordance of
assessments) was measured using the method proposed
by Landis and Koch [32]. A P-value <0.05 was consid-
ered to indicate statistical significance.
Results
Extraction of factors accounting for the quality of CGM
profiles
To identify the criteria determining a glucose profile,
we performed a factor analysis. Four factors were
identified (Table 2), which accounted for 95% of the
common variance in the dataset (38% factor 1; 34%
factor 2; 20% factor 3; and 3% factor 4). Factor 1 (central
tendency and hyperglycaemia) was associated with posi-
tive loadings of MBG, median, tG >8.9, AUCG >8.9, GRADE,
and HBGI. Factor 2 (within-day variability) was associated
with positive loadings of range, SD, IQR, MAGE,
CONGA6-h, and MODD. Factor 3 (hypoglycaemia) was
associated with positive loadings of tG <3.9, AUCG <3.9, and
LBGI. Factor 4 (between-day variability) was associated
with a positive loading of MODD.
Construction of the Q-Score
Among these factors, the parameters with loadings >0.5
were highly correlated with each other, based on linear
regression functions (data not shown). Therefore, one
parameter from each factor could be selected for the
construction of the Q-Score. The only exception was the
analysis of MBG and the time spent above the target
range (tG >8.9) from factor 1, where a sigmoid function
was found (Additional file 1: Figure S1). The time spent
above the target range was highly variable for any given
MBG. Therefore, these two parameters were selected
from factor 1 for the construction of the Q-Score.
From all factors, we selected one parameter that had

a high factor loading, was simple to calculate, and was
easy to interpret in the context of a CGM curve for
general practitioners. These parameters were the MBG
and the time spent above the target range from factor
1; the range from factor 2; the time spent below the tar-
get range from factor 3; and the MODD from factor 4
(Additional file 1: Figure S2).
In the proposed Q-Score, all parameters are combined

to generate a single measure and should, therefore, have
equal weight. To achieve equivalence in the parameters
for calculations, the five selected parameters with
unequal means and variances were standardised with a
z-transformation. The Q-Score was computed as the
sum of all five standardised variables. This ensured that
all five parameters had an equal impact on the Q-Score.



Table 2 Parameters for four factors identified in the factor analysisa

Parameter FACTORS

1 2 3 4

Central tendency and hyperglycaemia Intra-day variability Hypoglycaemia Inter-day variability

Range 0.298 0.903 0.156 0.077

SD 0.320 0.920 0.186 0.078

IQR 0.344 0.863 0.174 0.073

MAGE 0.259 0.901 0.160 0.077

CONGA-6 h 0.302 0.916 0.171 0.025

MBG 0.922 0.260 −0.264 0.055

Median 0.931 0.176 −0.276 0.074

tG >8.9 mmol/l 0.876 0.334 −0.139 0.101

AUCG >8.9 mmol/l 0.906 0.320 −0.027 0.032

HBGI 0.931 0.321 −0.070 0.044

GRADE 0.929 0.348 0.027 0.068

tG <3.9 mmol/l −0.143 0.195 0.951 0.036

AUCG <3.9 mmol/l −0.083 0.201 0.954 0.020

LBGI −0.230 0.189 0.942 0.018

MODD 0.354 0.657 0.139 0.649
aData are from 1,562 continuous glucose monitoring profiles.
Parameter loadings >0.5 indicate that the given factor was important for interpretation of the factor (denoted in bold).
AUCG, area under the curve for glucose; CONGA, continuous overall net glycaemic action; GRADE, glycaemic risk assessment for diabetes equation; HBGI, high
blood glucose index; IQR, interquartile range; LBGI, low blood glucose index; MAGE, mean amplitude of glycaemic excursions; MBG, mean blood glucose; MODD,
mean of daily differences; SD, standard deviation; tG, time outside glucose target range.
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Then, to ensure positive values, we added a constant
equal to 8. The formula for the Q-Score was:

Q−Score ¼ 8þMBG−7:8
1:7

þ range−7:5
2:9

þ tG<3:9−0:6
1:2

þ tG>8:9−6:2
5:7

þMODD−1:8
0:9

Categorisation of CGM profiles
Three diabetes specialists evaluated independently 766
CGM profiles and categorised them based on the meta-
bolic control revealed by the blood glucose profile as
very good, good, satisfactory, fair or poor. Representa-
tive examples of CGMs with Q-Scores in different
classes of metabolic control are shown in Additional
file 1: Figure S3. The inter-rater reliability between the
diabetes specialists using weighted Cohen’s kappa [31]
was significantly different from pure chance for all dia-
betes specialists (0.438 ± 0.019, 0.713 ± 0.016, 0.403 ±
0.018; P <0.001 for all). The categorisations were highly
correlated among the specialists (Kendall’s tau = 0.671,
0.787 and 0.751; P <0.001), allowing us to average the
categories for each patient. Scores of the same 766
CGM profiles, which were categorised by the three
diabetes specialists were calculated. A box-plot analysis
was used to define the limiting Q-Score values for the
CGM-categories defined by the diabetes specialists
(Figure 1A). The Q-Scores for the CGM-categories
were as follows: <4.0, very good; 4.0–5.9, good; 6.0–8.4
satisfactory; 8.5–11.9 fair; and ≥12.0 poor. These limits
were also applied to define the Q-Score categories as very
good, good, satisfactory, fair and poor (Additional file 1:
Figure S3). The criteria for the Q-Score categories and the
description of the Q-Score categories are shown in
Figure 1B.

Reliability of the Q-Score categories
The reliability of Q-Score categories was measured using
the linear weighted Cohen’s kappa coefficient [31] and
concordance was assessed using the scale by Landis and
Koch [32]. Overall there was a substantial concordance
between the assessment of CGM profiles by the dia-
betes specialists and the defined Q-Score categories (κ:
0.666 ± 0.010). There was substantial concordance be-
tween two diabetes specialists in terms of the Q-Score
categories (Physician A κ: 0.759 ± 0.015; Physician B κ:
0.724 ± 0.015), while the third diabetes specialist
showed moderate concordance (Physician C κ: 0.519 ±
0.018). Complete concordance in the selected Q-Score
categories and the assessment by diabetes specialists
was achieved for 59.1% of CGM profiles, a deviation of
one level in the categorisation (above or below; for
example diabetes specialist assessment as ‘very good’
and a Q-Score of ‘good’) in 37.4% of CGM profiles and



Figure 1 Definition of Q-Score categories. (A) The 766 CGM
profiles were categorised by the diabetes specialist according to
the metabolic control (very good, good, satisfactory, fair and
poor). For each category the corresponding Q-Scores are shown
as a box-plot analysis. The boundaries of the Q-Score categories
are shown as dotted lines. (B) Description of Q-Score categories.
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of two levels in 3.5% of CGM profiles (above or below;
for example diabetes specialist assessment as ‘very
good’ and a Q-Score of ‘satisfactory’).

Application of Q-Score in diabetes care
In the study population (n = 1,562), increases in the
Q-Scores corresponded to changes in common param-
eters used to described glycaemic control (P <0.001)
(Additional file 1: Table S1). We investigated whether
the Q-Score also increased with the complexity of
Table 3 Q-Score in relation to diabetes therapy

T2DM

Parameter Diet OHA

(n = 120) (n = 513)

Q-Score 5.1 ± 2.6 6.8 ± 3.0

MBG (mmol/l) 6.9 ± 1.3 7.5 ± 1.6

Range (mmol/l) 5.1 ± 2.1 6.5 ± 2.4

tG>8.9mmol/l (h) 0.9 (0.1-3.0) 3.1 (1.1-6.5)

tG<3.9mmol/l (h) 0 (0–0.4) 0 (0–0.4)

MODD (mmol/l) 1.2 ± 0.5 1.5 ± 0.6

Data represent the mean ± SD or median (interquartile range) for each category; OH
diabetes mellitus.
therapy (Table 3). We found that the Q-Score was
lowest for subjects treated with diet (5.0 ± 2.4), in-
creased for those treated with OHAs (6.8 ± 3.1) and
OHA + insulin (8.7 ± 3.3), and was highest for subjects
treated with insulin alone (9.6 ± 3.6) (Figure 2A). The
analysis of the Q-Score distributions (Figure 2B)
revealed significantly more fair or poor profiles in sub-
jects treated with insulin alone compared with those
treated with diet. Subjects with good and poor meta-
bolic control were present in all treatment groups.
However, the percentage of subjects with very good or
good Q-Scores was decreased in insulin-treated sub-
jects compared with those treated with diet (17.1% vs.
73.1%). Conversely, the percentage of people with fair
or poor profiles was higher in insulin-treated than in
diet-treated subjects (58.4 vs. 9.3%; Figure 2B). This
was adequately reflected by the corresponding Q-Scores
(Figure 2A, Table 3). Moreover, the Q-Score increased with
rising of HbA1c. In subjects with HbA1c <6.5% (n = 531)
the Q-Score was 6.23 ± 2.77 (mean ± SD). In subjects with
HbA1c 6.5–6.99% (n = 375) the Q-Score was 7.56 ± 2.93
and in subjects with 7.0–7.49% (n = 322) the Q-Score was
8.62 ± 3.17. High Q-Scores (9.96 ± 3.33) were seen in
subjects with HbA1c 7.5–7.99% (n = 155) and further ele-
vated in subjects with HbA1c ≥8.0% (n = 179; 11.72 ± 3.68).

Patient-tailored analysis of CGM profiles
The Q-Score enables the identification of profiles with
insufficient metabolic control. Aiming for a patient-
tailored approach, we developed a method allowing the
identification of the factors with improvement potential
in a given glucose profile. First, we defined the limits of
the improvement potential using the 95th percentile of
each Q-Score parameter of profiles categorised by the
diabetes specialists as very good and good. Values
below the 95th percentile were defined as ‘appropriate’
and values above as ‘with improvement potential’. Next,
the improvement potential was categorised as ‘low’,
‘moderate’ or ‘high’. Values above the 95th percentile of
profiles categorised as satisfactory were defined as ‘low’
T1DM

OHA + Insulin Insulin Insulin

(n = 439) (n = 442) (n = 48)

8.6 ± 3.3 9.2 ± 3.4 12.7 ± 3.2

8.0 ± 1.8 8.0 ± 1.6 8.5 ± 1.6

7.9 ± 2.7 8.5 ± 2.9 11.1 ± 2.7

5.5 (2.6-10.6) 6.5 (3.2-10.3) 9.1 (5.8-12.7)

0.1 (0–0.9) 0.2 (0–1.0) 0.9 (0.1-2.4)

2.0 ± 0.9 2.1 ± 0.9 3.3 ± 1.1

A, oral hypoglycaemic agent; T1DM, type 1 diabetes mellitus; T2DM, type 2



Figure 2 Q-Score in people with diabetes treated with diet, drugs or insulin. (A) Assessment of diabetes therapy using Q-Scores as indicators of
short-term glycaemic control in subjects treated with diet ( ), oral hypoglycaemic agents (OHA; ), OHA + insulin ( ), and insulin
alone ( ). Q-Scores increased significantly with the complexity of antihyperglycaemic treatments (P <0.001). Data represent means ± SD.
(B) Distribution of Q-Scores, grouped as very good + good ( ), satisfactory ( ), and fair + poor ( ) in the different therapy groups.
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improvement potential. The limits for ‘moderate’ or
‘great’ improvement potential were built, with equal
class size (Additional file 1: Table S2).
Overall, more than 80% of profiles categorised as fair

or poor had at least three factors to optimise (Additional
file 1: Figure S4). In particular, subjects with those
profiles would benefit from therapy optimisation. The
individual improvement potential is demonstrated by
combined illustration of the CGM curve, the improve-
ment potential for each Q-Score parameter, and the
statistical data for each factor (Figure 3). Three CGM
curves with different Q-Scores are provided as examples.
The profile #128830 had a satisfactory Q-Score (Figure 3A).
The analysis of the improvement potential indicates a low
improvement potential for the time in the hyperglycaemic
range. Case 133657 had a fair Q-Score (Figure 3B). The
improvement potential was ‘moderate’ for tG <3.9 and ‘low’
for range and MODD, respectively (Figure 3B). Case
136516 had a poor Q-Score. This profile shows prolonged
hyperglycaemic status, resulting in a high improvement
potential for tG >8.9. A high MBG and increased glycaemic
variability were also recorded in this subject, therefore a
moderate improvement potential was recorded for central
tendency, intra- and inter-daily variability (Figure 3C).

Discussion
There is a need for a metric to assess short-term glycaemic
control, similar to the way in which measuring HbA1c

allows the assessment of long-term glycaemic control. We
aimed to develop a score-type metric that provides an over-
all, understandable assessment of the blood glucose profile.
Ideally, this measure would be sensitive to chronic hyper-
glycaemia, glucose variability, and hypoglycaemia, and be
applicable in routine diabetes care for the screening of pro-
files with insufficient metabolic control.
For the development of the metric, we first intended

to identify the factors determining the quality of a CGM
profile. We performed the first published factor analysis
[29,30] of CGM-variables [4-7,9,10]. By definition, a
factor represents a cluster of highly correlated variables
[29,30]. We identified four factors that described CGM
profiles: hyperglycaemia, inter- and intra-daily variability,
and hypoglycaemia. To verify our findings, we analysed
the variables with positive loadings within each factor.
For factor 1, we found that two variables were necessary
to describe hyperglycaemia: MBG, and the time spent in
the hyperglycaemic range. Thus, overall, five variables
adequately described the CGM: central tendency,
hyperglycaemia, intra-daily variability, hypoglycaemia,
and inter-daily variability. These are equivalent to the
key metrics (target range, glucose exposure, glucose
variability, hypoglycaemia, and hyperglycaemia) sug-
gested by an expert panel for the standardisation of
glucose reporting, analysis, and clinical decision
making [10]. The new metric, which we called the Q-
Score (Q = Quality), was constructed with parameters
from these factors or key metrics.
Earlier studies have also sought to identify the most

useful CGM-parameters for clinical use [6-8,33,34].
Rodbard [7] evaluated methods for assessment of gly-
caemic control and glycaemic variability. Consistent
with our findings, Rodbard [7] observed high correla-
tions among MAGE, SD, IQR, and CONGA, and also
concluded that these measures provided essentially the
same information. The author defined four groups of
methods for characterising glucose variability. Three
groups contained parameters summarised by our factor
analysis in the factor ‘intra-day variability’. The fourth
group [7], the MODD, was also identified in our study,
belonging to factor ‘inter-day variability’. In accordance
with our findings, hypoglycaemia, hyperglycaemia, and
euglycaemia were identified as parameters of glycemic
control [7]. Recently, Fabris et al. [35] analysed a pool of
25 glucose variability indices using the Sparse principal
component analysis in a study with 17 subjects diagnosed
with type 1 diabetes. The authors identified a subset of 10



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Individual improvement potential demonstrated for three CGM profiles. Values for the Q-Score parameters, and the individual improvement
potential for each Q-Score parameter are demonstrated for three historic CGM curves. (A) The CGM profile (#128830) was recorded in a 75-year-old
individual, diagnosed at age 56 (BMI 21.6 kg/m2, recorded HbA1c 7.5%). The subject was treated with intensified conventional therapy (ICT) (prandial
insulin: 5, 5, 3, 3 IU; basal insulin: 5, 6 IU). (B) The CGM profile (#133657) was obtained from a 53-year-old individual, diagnosed at age 46. (BMI 32.3 kg/
m2, recorded HbA1c 6.8%). The subject was treated with oral hypoglycaemic agents (metformin 1 × 850 mg, sulfonylurea 2 × 1.75 mg). (C) The CGM
profile (#136516) was recorded in a 75-year-old individual, diagnosed at age 52 (BMI 29.7 kg/m2, recorded HbA1c 8.6%). The subject was treated with a
combination of oral hypoglycaemic agents (metformin 2 × 1000 mg) and insulin (ICT: 28, 26 and 26 IU; basal insulin 40 IU).

Augstein et al. BMC Endocrine Disorders  (2015) 15:22 Page 8 of 10
different glucose variability indices that are sufficient to
preserve more than the 60% of the variance originally
explained by all 25 variables [35].
CGM is increasingly being introduced into diabetes

care [1]; therefore, there is an increasingly urgent re-
quirement for a metric summarising the quality of short-
term glucose control [21-23]. Like us, Rawlings et al.
[21] aimed to develop an integrated approach that pro-
vides a complete and consistent assessment of glycaemic
control. However, these authors followed a different
approach and published a graphical user interface for
evaluation of CGM profiles based on glucose variability
metrics [SD, MODD, CONGA(n), and MAGE] and
glycaemic statistics (time spent within thresholds, time
spent in hyperglycemic/hypoglycemic conditions, area
under the curve, and mean glucose). The interface was
tested in a small number of subjects with type 1 dia-
betes. Marling et al. developed a ‘consensus perceived
glycaemic variability metric’ that captures the gestalt
perceptions of experienced physicians using a machine
learning algorithm [23]. In tests on 250 CGM profiles
from subjects with type 1 diabetes, this metric outper-
formed mean amplitude of glycaemic excursion, standard
deviation, distance travelled, and excursion frequency [23].
Thomas et al. [22] also developed a measure for assessing
glycaemic control using CGM profiles. In the ‘Pentagon’
model [22] they included MBG, AUCG >160 mg/dl, tG >160

mg/dl, SDGlucose, and HbA1c; thus, that model included
three of the factors identified in the present study; hyper-
glycaemia, central tendency and intra-daily variability.
However, in contrast to the Q-Score, the Pentagon model
included HbA1c. In another study, Thomas et al. [36]
reported that the Pentagon model was helpful for
assessing individual glycaemic profiles of subjects with
type 1 diabetes and for assessing the influence of thera-
peutic interventions. In addition, they showed that model
predictions of the risk of developing late complications
were more accurate than HbA1c predictions. Future
studies are necessary to compare the Q-Score to the
Pentagon model. These studies [21-23] aimed to facilitate
interpretations of blood glucose profiles and to allow the
identification of ‘weak points’ in diabetes management,
which is consistent with our approach in this study. How-
ever, these studies focused on type 1 diabetes, whereas we
tested the Q-Score in a large set of CGM profiles
obtained from subjects with type 1 and type 2 diabetes.
It should be noted that the relatively small number of
subjects with type 1 diabetes represents a limitation of
our study.
To develop a practical, readily interpreted metric for

routine clinical use and screening, we intended that the
Q-Score should allow categorisation of glycaemic control
from very good to poor. To achieve categorisation in our
study, three diabetes specialists independently classified
CGM profiles into groups of very good, good, satisfactory,
fair, and poor metabolic control. The majority of profiles
were derived from subjects with type 2 diabetes. As ex-
pected, the results reflected subjective evaluations. How-
ever, the high Kendall’s tau correlation indicated that the
results were consistent. The groups of evaluated CGM
profiles were used to define the Q-Score limits between
categories of very good, good, satisfactory, fair, and poor
glycaemic control. In addition, we conducted a proof-of-
principle study to show that patients with diabetes could
be stratified for treatment based on the Q-Score using the
CGM profiles of 1,562 historical subjects. The category of
good glycaemic control included the majority of subjects
treated with diet, half of those treated with OHA, only a
quarter of those treated with OHA + insulin, and less than
20% of those treated with insulin alone. These findings are
in accordance with other studies that demonstrate that
blood glucose profiles are worsened with increasing
therapy complexity (from diet alone to insulin) [25-27,37].
Thus, the categorical Q-Score allows the identification of
subjects with poor metabolic control who require therapy
optimisation. We intend to verify the Q-Score in a larger-
scale study that includes CGM profiles derived from
hospitalised subjects and those with diabetes and
coexistent chronic illness.
Patient-tailored diabetes therapy represents the state-of

the art in diabetes care and management [38,39]. Therefore,
in addition to providing a general assessment of glycaemia,
we demonstrate a method for identification of Q-Score
parameters that require therapeutic attention and would
provide a basis for personalised diabetes therapy. Profiles of
people with diabetes categorised as very good or good were
used to set the limit for the improvement potential of all
Q-Score parameters. This method reveals the parameters
that require therapeutic action; for example, the adjustment
of the insulin therapy in the case of hypoglycaemia.
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Conclusions
We developed a metric for automated, objective evalua-
tions of CGM profiles called the Q-Score. The Q-Score
included the essential factors describing a glucose pro-
file and therefore provides global information on
glucose profiles, summarised in one value. The Q-Score
can be categorised, and is suitable for screening profiles
of individuals with insufficient metabolic control. In
addition, it allows identification of factor(s) underlying
the profiles that are mainly responsible for the quality
of metabolic control in a given patient. Those parame-
ters with improvement potential can be identified and
addressed by therapeutic actions. Therefore, the Q-
Score may efficiently contribute to designing strategies
for patient-tailored diabetes care and management.
Additional file

Additional file 1: Figure S1. Relationship between mean glucose and
time that blood glucose remained above 8.9 mmol/L. The function
indicates that, for a given mean glucose, the time spent in the
hyperglycaemic range can vary for several hours. Even at a mean of
7 mmol/L the range is from 0 to 6 hours. At 9 mmol/L it is about 8–14
hours. Data are from 1562 profiles. Figure S2. Components of the Q-
Score. Schematic illustration of the Q-Score components: MBG (mean
glucose), MODD (mean of daily differences), thyper (time in hyperglycaemia),
thypo (time in hypoglycaemia), Range, (min-max-difference on one day).
Figure S3. Representative examples of CGMs in different Q-Score
categories. The Q-Score is given for each example in the upper right
corner. The green region indicates the target range for glucose (3.9–
8.9 mmol/L). Figure S4. Improvement potential increases for CGM
profiles categorised from very good to poor. Number of parameters
with improvement potential in five Q-Score categories. The highest
number of parameters with improvement potential was found in CGM
profiles categorised as poor. Data are from 1562 profiles. Table S1.
Association of the Q-Score with CGM quality parameters. Table S2.
Limits for the improvement potential categories given for all parameters of
the Q-Score.
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