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Abstract
Background The use of non-invasive risk scores to detect undiagnosed type 2 diabetes (T2D) ensures the restriction 
of invasive and costly blood tests to those most likely to be diagnosed with the disease. This study assessed and 
compared the performance of the African Diabetes Risk Score (ADRS) with three other diabetes risk prediction models 
for identifying screen-detected diabetes based on fasting plasma glucose (FPG) or glycated haemoglobin (HBA1c).

Methods Age, sex, waist circumference, body mass index, blood pressure, history of diabetes and physical activity 
levels from the SA-NW-PURE study were used to externally validate the ADRS and other established risk prediction 
models. Discrimination was assessed and compared using C-statistics and nonparametric methods. Calibration was 
assessed using calibration plots, before and after recalibration.

Results Nine hundred and thirty-seven participants were included; 14% had prevalent undiagnosed T2D according 
to FPG and 26% according to HbA1c. Discrimination was acceptable and was mostly similar between models for both 
diagnostic measures. The C-statistics for diagnosis by FPG ranged from 0.69 for the Simplified FINDRISC model to 0.77 
for the ADRS model and 0.77 for the Simplified FINDRISC model to 0.79 for the ADRS model for diagnosis by HbA1c. 
Calibration ranged from acceptable to good, though over- and underestimation were present. All models improved 
significantly following recalibration.

Conclusions The models performed comparably, with the ADRS offering a non-invasive way to identify up to 79% 
of cases. Based on its ease of use and performance, the ADRS is recommended for screening for T2D in certain Black 
population groups in South Africa. HbA1c as a means of diagnosis also showed comparable performance with FPG. 
Therefore, further validation studies can potentially use HbA1c as the standard to compare to.

Keywords Type 2 diabetes, African, Epidemiology, Diabetes risk score, Validation

HbA1c comparable to fasting glucose in the 
external validation of the African Diabetes Risk 
Score and other established risk prediction 
models in Black South Africans
Nicola Royce1, Héléne T Cronjé2, André P Kengne3,4, Herculina S Kruger1,5, Robin C Dolman-Macleod1 and 
Marlien Pieters1,5*

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12902-024-01735-w&domain=pdf&date_stamp=2024-10-7


Page 2 of 12Royce et al. BMC Endocrine Disorders          (2024) 24:213 

Introduction
Diabetes is a growing problem worldwide. Type 2 diabe-
tes (T2D) and intermediate hyperglycaemia are becom-
ing increasingly burdensome to residents and healthcare 
systems in low- and middle-income countries (LMICs), 
even though the majority of cases remain undiagnosed 
[1]. Africa is expected to experience the greatest increase 
in diabetes prevalence by 2045 [2]. These patterns are 
also observed in South Africa, where the T2D epidemic 
occurs alongside the communicable disease epidemic 
of human immunodeficiency virus and tuberculosis [3]. 
This strains the public healthcare system, which services 
over 80% of the population [4].

In South Africa, 45% of the estimated T2D cases are 
undiagnosed [2]. Hyperglycaemia results in pathological 
and functional changes and may persist for an extended 
period before being diagnosed [5]. The chronic nature of 
T2D requires continuous clinical care and management 
that requires significant healthcare resources. In South 
Africa, the direct cost of managing T2D amounted to 
over ZAR 2.7 billion in 2018 (approximately US$143 mil-
lion), half of which related to treating complications. This 
cost is expected to increase at least 10-fold over the next 
decade [6]. Detecting T2D early in the pathophysiological 
process enables early administration of patient-centred 
management to optimise glycaemia and minimise com-
plications, subsequently reducing its associated health 
and economic burden [7–9].

As glucose testing cannot be applied broadly in 
resource-poor settings such as South Africa, a risk assess-
ment score based on non-invasive predictors is a quick 
method of guiding healthcare professionals as to whether 
a blood-based diagnostic test should be performed [10]. 
This ensures the allocation of scarce resources to those at 
highest risk to prevent the progression of T2D and asso-
ciated complications [11]. Risk scores can also be used 
as health promotion tools in LMIC settings when used 
as self-completion questionnaires. The information pro-
vided at the end of the questionnaire, based on the risk 
status, can potentially act as a catalyst for needed lifestyle 
changes [12].

Several non-invasive risk assessment tools have been 
developed in specific White, multi-racial, Asian, and 
Middle Eastern cohorts, which limits their generalisabil-
ity to other populations, such as individuals of African 
descent [13–16]. Prediction equations developed in other 
population groups that only include non-invasive vari-
ables have performed poorly in Black African cohorts, 
and either underestimated or overestimated T2D risk 
[14, 16]. This is because there are different thresholds, for 
example, for age, body mass index (BMI), and waist cir-
cumference in terms of T2D risk in Africans compared 
to individuals of European descent [16]. To date, only one 
sub-Saharan African screening tool has been developed 

using data from Tanzania, Senegal, and Guinea, known as 
the African Diabetes Risk Score (ADRS). The predictive 
accuracy for screen-detected T2D of this screening tool 
was found to be good in two Black cohorts from Cape 
Town (CRIBSA Study) and rural Kwa-Zulu Natal [17]. 
As ethnicity influences T2D risk [10], the ADRS requires 
further validation in other ethnic groups from a variety of 
settings in South Africa to ensure that it reliably predicts 
the risk of undiagnosed T2D in Black individuals with 
different demographic and ethnic characteristics.

This study aimed to further validate the ADRS in the 
South African North-West Province arm of the Prospec-
tive Rural and Urban Epidemiology (SA-NW-PURE) 
study. The American Diabetes Association (ADA) risk 
score, a Simplified Finnish Diabetes Risk Score (FIND-
RISC), and the Indian Risk Score (IRS), which were devel-
oped in different phenotypic and racial populations, were 
also validated to compare the predictive performance of 
the ADRS [13, 18, 19]. Furthermore, this study evaluated 
whether predictive performance differed between fast-
ing plasma glucose (FPG)-based or glycated haemoglobin 
(HBA1c)-based diagnoses and across age, BMI, sex, and 
rural-urban living subgroups.

Materials and methods
Study population and design
The PURE study is a large-scale epidemiological study 
that prospectively investigates lifestyle behaviours, car-
diovascular risk factors and chronic non-communicable 
disease incidence among different communities across 
27 low-, middle-, and high-income countries [20]. This 
study used data from SA-NW-PURE, collected at three 
time points (2005, 2010 and 2015). Self-reported Tswana 
speaking, apparently healthy Black adults older than 30 
years of age were eligible for inclusion at baseline (2005). 
Any self-reported prior cardiovascular event or acute ill-
ness was basis for exclusion. Detailed information on 
participant selection and recruitment has been reported 
previously [20, 21]. The SA-NW-PURE study included 
two dwelling sites (urban and rural) and consisted of 
n = 2 010 participants at baseline. In 2010, n = 1 282 par-
ticipants returned for follow-up, and n = 924 returned in 
2015. All participants provided written informed con-
sent prior to data collection. The study received ethi-
cal approval from the North-West University Health 
Research Ethics Committee (NWU-00190-22-A1) and 
complies with the amended Declaration of Helsinki.

Newly diagnosed T2D was defined as having FPG 
levels   ≥ 7 mmol/L or HbA1c   ≥ 6.5%, in line with cur-
rent guidelines [22], at any of the three data collection 
time-points. These participants (cases) were investigated 
alongside individuals for whom FPG or HbA1c were 
below the established cut-offs throughout follow-up (par-
ticipants without T2D). Individuals who were receiving 
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diabetes medication at any time point were excluded. 
Data collected at the first time of diagnosis for partici-
pants with T2D (this could be either time point 1, 2 or 3), 
and at baseline for participants without T2D, were used 
in the risk prediction models. In all, n = 937 participants 
were included in this cross-sectional analysis. Supple-
mental Fig.  1 provides an overview of the case-status 
across data collection time points.

Data collection
Information regarding general demographics, tobacco 
use, alcohol consumption, dietary intake, physical activ-
ity, and medicine use (including lipid-lowering, anti-
hypertensive, and glucose-lowering medication) was 
collected by trained field workers using standardised, 
validated questionnaires. Weight, height, and waist cir-
cumference were measured according to the Interna-
tional Standards of Anthropometric Assessment (ISAK). 
BMI was calculated by dividing weight by height squared 
and reported as kg/m2. Blood pressure was measured in 
mmHg using the OMRON HEM-757 (Omron Health-
care, Kyoto, Japan) automated digital blood pressure 
monitor in 2005 and 2010, and the OMRON M6 device 
(Omron Healthcare, Kyoto, Japan) in 2015. Fasting (over-
night) blood samples were collected, processed, and 
stored at − 80  °C until analyses. Samples for FPG were 
collected in fluoride tubes, and FPG was quantified using 
an enzymatic reference method with hexokinase on a Vit-
ros DT6011 Chemistry Analyzer (Ortho-Clinical Diag-
nostics, Rochester, New York, USA) in 2005, and a Cobas 
Integra 400 Roche Clinical System (Roche Diagnostics, 
Indianapolis, IN, USA) in 2010 and 2015. Samples for 
glycated haemoglobin (HbA1c) were collected in EDTA 
tubes and determined via ion exchange high-perfor-
mance liquid chromatography with the D-10 Haemoglo-
bin testing system at all time points (Biorad, Hercules, 
California, USA).

Risk prediction models
The ADRS is the only prediction model that has been 
developed in a sub-Saharan African population [17]. The 
FINDRISC model is a widely used diabetes risk score 
that was developed in a White population [23] and sub-
sequently broadly validated [24, 25]. Physical activity and 
diet were excluded in the Simplified FINDRISC, a deriva-
tive of the FINDRISC model developed by Bergmann et 
al. (2007), as these variables were found to have limited 
relevance [23]. The ADA risk model was developed in a 
multi-ethnic population and is used on a large scale in 
the United States [13]. The IRS model was developed in 
an Indian population [19]. Details of the different risk 
prediction models are provided in Supplemental Table 1.

Statistical analysis
The participant distribution (T2D vs. no T2D) based on 
FPG and HbA1c diagnosis is shown in Supplemental 
Table 2. In terms of precision, Vergouwe et al. [26] sug-
gest that a minimum of 100 events (T2D) and 100 non-
events are required for the validation of binary outcomes. 
In the SA-NW-PURE study, at least 100 people were 
diagnosed with T2D in total using either FPG or HbA1c. 
The predicted probability of undiagnosed T2D for each 
participant was estimated using the relevant predictors 
for each model [13, 17–19]. Exclusions based on missing 
data were model-specific, resulting in differential cohort 
sizes across models. Model performance was assessed 
using discrimination and calibration statistics.

Discrimination refers to the ability of the model to dis-
tinguish those with prevalent undiagnosed T2D from 
those without T2D. Discrimination was assessed and 
compared using the concordance (C) statistic and non-
parametric methods [27, 28]. C-statistics vary from 
no discrimination (0.5) to perfect discrimination (1.0), 
where values of 0.6–0.7 are deemed to be poor, 0.7–0.8, 
acceptable and 0.8–0.9, good [29]. Another popular 
method for displaying the discriminatory accuracy of a 
potential novel marker (diagnostic test), is the receiver 
operating characteristic (ROC) curve [30]. ROC curves 
are used to calculate the Youden Index, which is the opti-
mal cut-off for maximising the potential effectiveness of 
a model, where sensitivity and specificity are determined 
for each threshold [31]. This index ranges between 0 and 
1, where 1 indicates complete separation between dis-
eased and healthy populations and 0 indicates complete 
overlap [30].

Calibration refers to the agreement between the prob-
ability of the outcome of interest as estimated by the 
model and the observed outcome frequencies [32]. This 
was assessed by plotting the predicted risk against the 
observed outcome rate in calibration plots, as well as 
utilising the Hosmer and Lemeshow goodness-of-fit 
test [29, 33]. Furthermore, the agreement between the 
expected and observed T2D rates (E/O) was assessed, 
where the 95% confidence intervals (CIs) were calculated 
assuming a Poisson distribution [33]. Ideally, the E/O rate 
should be as close to 1 as possible, values below 1 under-
estimate, and values above 1 overestimate the risk of 
undiagnosed T2D prevalence.

The Yates slope and the Brier score were also calcu-
lated. The Yates slope is the difference between the mean 
predicted probability of T2D for participants with and 
without prevalent T2D, where higher values indicate bet-
ter performance [30]. The Brier score is the squared dif-
ference between the predicted probability and the actual 
outcome for each participant, where a perfect prediction 
model has a value of 1, and 0 indicates no match in pre-
diction and outcome [32, 34].
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To reduce bias brought on by differences in T2D 
prevalence between the development and test (valida-
tion) populations, all models were recalibrated accord-
ing to the SA-NW-PURE-specific T2D prevalence using 
intercept adjustment. The calculated correction factor is 
based on the mean predicted risk and the prevalence in 
the SA-NW-PURE dataset and is the natural logarithm of 
the odds ratio of the mean observed prevalence and the 
mean predicted risk [35]. Furthermore, sensitivity analy-
ses were conducted to assess the aforementioned aspects 
of model performance using first FPG and then HbA1c 
for T2D diagnosis.

Data analysis used R® statistical software version 4.1.1 
(2021), and the level of statistical significance was set at 
p < 0.05. The models were validated in the overall sample 
and compared between sex (men vs. women), median age 
(< 51 years vs.  ≥ 51 years), median BMI (< 25 vs. ≥  25 kg/
m2), and residency (rural vs. urban) subgroups upon 
recalibration.

Results
Participant characteristics
The prevalence of T2D, according to FPG, was approxi-
mately 14%, whereas it was just over 26%, according to 
HbA1c (Supplemental Table 2). Supplemental Table 
3 provides the descriptive characteristics of the full 

analytical cohort (n = 937), and across the four case–non-
case groups. More women were diagnosed with T2D by 
HbA1c than FPG (79.8% vs. 69.6%). Overall, those with 
T2D were older, had higher waist circumferences, and 
were more likely to be women, overweight or obese, and 
hypertensive. Very few participants with T2D reported 
having a family history of diabetes, although this data 
should be interpreted cautiously as almost 40% of the 
participants had missing family history data.

Prediction of prevalent undiagnosed T2D
The number of variables included in the risk prediction 
models ranged from three (ADRS) to six (ADA). All 
included age and waist circumference, and hyperten-
sion status was only excluded by the IRS. The Simplified 
FINDRISC model included characteristics with the least 
amount of missing data and thus had the largest sample 
size for analysis, whereas the ADA had the smallest sam-
ple size (Table 1).

Discrimination
Table 1 includes the C-statistics and sensitivity and speci-
ficity measures at the optimal threshold, used to compare 
discrimination ability across models. Discrimination was 
acceptable overall and tended to be better in HbA1c- 
vs. FPG-based diagnoses. The ADRS had the highest 

Table 1 Performance of the original risk prediction models and the recalibrated models based on diagnosis by FPG and HbA1c
ADRS Simplified FINDRISC ADA IRS

T2D Diagnosed by FPG
Sample Size n = 720 (100 cases) n = 727 (101 cases) n = 420 (49 cases) n = 423 (49 cases)

Performance Original Recalibrated Original Recalibrated Original Recalibrated Original Recalibrated
E/O [95% CI] 0.15 

[0.12–0.18]
1.01 [0.83–1.23] 0.24 

[0.20–0.30]
0.96 [0.79–1.17] 6.40 

[5.27–7.78]
2.76 [2.27–3.35] 0.70 

[0.57–0.85]
0.90 
[0.74–1.09]

Brier score 0.13 0.11 0.13 0.12 0.67 0.19 0.10 0.10
Yates slope 0.02 0.11 0.02 0.08 0.11 0.27 0.05 0.07
C-statistic [95% CI] 0.77 

[0.73–0.82]
- 0.69 

[0.63–0.74]
- 0.75 

[0.69–0.81]
- 0.74 

[0.67–0.81]
-

Optimal threshold 0.01 0.08 0.02 0.09 0.92 0.21 0.11 0.15
Sensitivity 87.0 - 70.0 - 88.0 - 67.0 -
Specificity 55.0 - 66.0 - 51.0 - 71.0 -
T2D Diagnosed by HbA1c
Sample Size n = 815 (215 cases) n = 822 (218 cases) n = 477 (124 cases) n = 480 (125 cases)
Performance Original Recalibrated Original Recalibrated Original Recalibrated Original Recalibrated
E/O [95% CI] 0.08 

[0.07–0.09]
0.84 [0.73–0.95] 0.13 

[0.11–0.15]
0.81 [0.71–0.92] 3.35 

[2.94–3.83]
1.93 [1.69–2.20] 0.37 

[0.32–0.42]
0.96 
[0.84–1.09]

Brier score 0.25 0.16 0.24 0.17 0.55 0.23 0.20 0.16
Yates slope 0.02 0.18 0.04 0.17 0.11 0.31 0.06 0.14
C-statistic [95% CI] 0.79 

[0.75–0.82]
- 0.77 

[0.73–0.80]
- 0.78 

[0.73–0.82]
- 0.79 

[0.75–0.83]
-

Optimal threshold 0.01 0.17 0.02 0.16 0.92 0.38 0.08 0.24
Sensitivity 80.0 - 74.0 - 89.0 - 78.0 -
Specificity 64.0 - 71.0 - 55.0 - 73.0 -
FPG – fasting plasma glucose; HbA1c – glycated haemoglobin; E/O – expected/observed

Sample sizes differ for each risk prediction model, as participants with missing data were excluded per model
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C-statistic for T2D by FPG diagnosis and performed as 
well as the IRS for T2D diagnosis by HbA1c, whereas the 
Simplified FINDRISC performed the worst in both diag-
nostic groups. The ADA risk score was the most sensitive 
and least specific score in both diagnostic models, fol-
lowed by the ADRS in each case. Overall, the IRS pro-
vided the best sensitivity/specificity profile (Fig. 1). When 
comparing C-statistics between subgroups (Table 2), the 
Simplified FINDRISC and IRS models performed bet-
ter in participants below vs. above the median age for 
both, and there was better ADA risk score discrimination 
in rural- vs. urban-dwelling individuals and those with 
BMIs below vs. above the median. The ADRS performed 
equally well in all subgroups.

Calibration
According to the E/O ratio, before recalibration, the 
ADRS, Simplified FINDRISC, and IRS models underes-
timated the prevalence of FPG- and HbA1c-based T2D, 
whereas the opposite was observed for the ADA risk 
score (Table  1). Recalibration improved the agreement 
between predicted and observed prevalent T2D rates 
for all models. Although the pattern of underestimation 
remained, the 95% CI of the E/O ratio for the ADRS, Sim-
plified FINDRISC and IRS models all spanned 1, with the 
ADRS for FPG-based T2D diagnosis performing the best. 
The ADA risk model also improved upon recalibration 

but continued to overestimate T2D prevalence approxi-
mately 2-fold.

The calibration curves are presented in Fig.  2. In 
agreement with the E/O data, there was a systematic 
risk overestimation across the continuum of predicted 
prevalence by the ADA model for both FPG and HbA1c 
as the method of diagnosis. When compared to FPG as 
diagnostic criteria, the ADRS and IRS had a selective 
upper stratum (when T2D probability was higher) risk 
overestimation. In contrast, the ADRS had a system-
atic underestimation across the continuum, and the IRS 
had a combination of overestimation in the lower strata 
and underestimation in the upper strata, using HbA1c 
as the method of diagnosis. The Simplified FINDRISC 
had a lower strata underestimation and an upper strata 
overestimation when using FPG as the method of diag-
nosis, whereas it had a systematic underestimation when 
HbA1c was used.

Regarding subgroup analysis (Table  2), the ADRS 
proved the most stable, with 95% CIs overlapping 
between each of the compared groups. The Simplified 
FINDRISC had two instances of non-overlapping pre-
diction, and there was one instance for the ADA and IRS 
scores. Each of these three models also had one instance 
of very slight overlapping. The lack of overlap predomi-
nantly occurred with HbA1c-based diagnosis. The Sim-
plified FINDRISC significantly overestimated FPG-based 
T2D prevalence in women compared to men. In contrast, 

Fig. 1 ROC curves for each risk prediction model by FPG-diagnosis (red) and HbA1c-diagnosis (blue), and their respective C-statistic and optimal thresh-
old values from the Youden Index approach (black values) and the top left point approach (grey values). The numbers featured in the square brackets 
are co-ordinates
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although both were overestimated, the ADA risk score 
predicted much higher HbA1c-based T2D in men com-
pared to women. Both the simplified FINDRISC and 
IRS predicted a higher HbA1c-based T2D prevalence 
for participants younger vs. older than 51 years. While 
both ratios remained higher than 1, the discrepancy in 
the expected vs. observed prevalence of HbA1c-based 
T2D was larger in participants with a lower compared to 
higher BMI for the ADA. Finally, the Simplified FIND-
RISC underestimated risk in urban vs. rural dwellers.

Discussion
This study further validated the unpublished ADRS, the 
only risk prediction model developed in a sub-Saharan 
African population and compared its performance to that 
of other widely used T2D risk prediction models. To the 
authors’ knowledge, this is also the first study to evalu-
ate whether the performance of risk prediction models 
differed when using HbA1c or FPG as the diagnostic 
measure of T2D. Though many T2D risk scores have 
been developed, only a few have been externally vali-
dated, usually in high-income countries [36]. Since pre-
diction equations developed in other population groups 
that include non-invasive variables only, have performed 
poorly in African cohorts [14, 16], it is important to iden-
tify a suitable risk prediction model for use in individu-
als of African descent. The external validation study by 
Masconi et al. [14] also highlighted the need to improve 
screening tools for use in the South African setting. In 
terms of a public health approach, a non-invasive risk 
score can be used to identify individuals at risk of preva-
lent undiagnosed T2D who should undergo further bio-
chemical testing [37]. This will ensure the allocation of 
scarce resources to those at the highest risk to prevent 
the progression of T2D and associated complications in 
a cost-effective manner. An ideal screening tool should 
thus be easy to use, non-invasive, free, and easily acces-
sible to clinicians, public health workers, researchers, and 
individuals to assess their level of risk of having T2D [11, 
15].

Overall performance
Almost all participants with T2D reported not being 
previously diagnosed with T2D, which agrees with the 
high prevalence of undiagnosed T2D in SA [2]. In the 
SA-NW-PURE sample, the ADA overestimated risk, and 
the remaining prediction models performed relatively 
comparably. Except for the ADA, the other models had 
an overall modest-to-acceptable discriminatory ability to 
predict prevalent undiagnosed T2D, using both FPG and 
HbA1c as diagnostic criteria. However, the ADRS and 
IRS performed marginally best when FPG and HbA1c, 
respectively, were used, taking C-statistics, E/O rates, 
sensitivity, and specificity into account. The age cut-off in M
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the population used to develop the Simplified FINDRISC 
was much higher than the other three models, and FIND-
RISC only included the use of blood pressure medication 
(and not blood pressure itself ) to determine hypertensive 
status (thus assuming that all people with hypertension 
were receiving treatment), which could have negatively 
impacted its performance in this population.

The calibration for all models was improved through 
simple intercept adjustment, and the assessment of reca-
libration was better when FPG was used. After recalibra-
tion, the ADRS had a near-perfect E/O ratio when FPG 
was used for diagnosis, and the calibration curve was 
close to the curve of perfect calibration, with slight over-
estimation in the upper strata only. Furthermore, the 
ADRS performed equally well in all subgroups, further 
supporting its generalisability. This is not unexpected as 
the three variables that the ADRS uses; age, waist cir-
cumference, and hypertension, are known to be strong 
predictors of T2D [38–42] and commonly feature in risk 
prediction models. The fact that the recalibration had 
the smallest effect on the IRS suggests that the baseline 
prevalence in the population in which the IRS was devel-
oped was similar to that of the SA-NW-PURE study. In 
contrast, the baseline risk in the population in which the 
ADA model was developed was much higher, and while 
recalibration was slightly successful in reducing the 
degree of risk overestimation, this remained unaccept-
ably high.

The number of variables used in the equations does 
not seem to influence the predictive performance of 
risk scores [12]. However, the more variables the model 
uses, the higher the chance of participant exclusion due 
to missing data. This is seen with the ADA, which had 
the largest number of variables (n = 6) and the smallest 
sample size (n = 420). Though the ADRS had the fewest 
variables (n = 3), the Simplified FINDRISC, with five vari-
ables, had the largest sample size (n = 727).

Considering the aforementioned results, the ADRS 
is recommended for use in this Tswana-speaking, Black 
South African population. Though the IRS performed 
marginally better when HbA1c was used, it includes fam-
ily history of diabetes and level of physical activity as 
variables, which may result in missing data or incorrect 
information used for risk calculation. This is particularly 
relevant in older populations, and those with a relatively 
low level of education, poor access to health care, and 
unhealthy lifestyles [43]. The ADRS includes age, waist 
circumference and hypertensive status as variables, all 
of which are easy to obtain. Fewer variables reduce the 
risk of missing data and the impact this has on the per-
formance of a model. The ADRS has been externally 
validated by Mayige [17] in an urban Black population in 
Cape Town (CRIBSA study population), and a rural Black 
population in Kwa-Zulu Natal, and it also performed well 
in these populations. Although ethnicity was not geneti-
cally determined in this or the external validation studies 
by Mayige [17], individuals in the North-West Province, 

Fig. 2 Calibration curves for each risk prediction model by FPG-diagnosis (red) and HbA1c-diagnosis (blue), and their respective Brier scores and Yates 
slopes. The grey curves represent the original calibration, and the coloured curves represent recalibration
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Cape Town and Kwa-Zulu Natal typically represent dif-
ferent ethnicities, and these results, therefore, suggest 
that the ADRS can successfully be used in different eth-
nic groups in South Africa.

Performance according to subgroups
The models’ performance varied in the major subgroups, 
where they generally performed better in women, those 
who were younger, and those with a lower BMI. Dis-
crimination varied in the subgroups from poor to good. 
Women accounted for 70% of the sample of this study. 
Certain risk factors for T2D may affect men and women 
differently, such as distinct hormonal profiles in women 
that influence their risk [44], or sex differences in health-
related behaviour, such as smoking, excessive drinking, 
and unhealthy dietary habits, that can alter diabetes risk 
[45]. Men are also more insulin resistant than women 
and have greater central and hepatic fat compared to 
women [46, 47]. If the model has been developed using 
risk factors that are more common in one sex, it may not 
accurately assess risk in the other. For example, Mayige 
[17] indicated that women were over-represented in the 
studies used to derive and validate the ADRS. Moreover, 
T2D is strongly associated with obesity [10], and in indi-
viduals with lower BMI levels, other risk factors for T2D 
may become more significant, allowing the model to 
detect and weight these factors more effectively. It is thus 
important that individuals with a range of BMI levels are 
included in the development of a risk prediction model, 
so the diversity can improve the model’s ability to evalu-
ate a range of risk factors and their interactions.

The median age of the SA-NW-PURE population was 
51 years; thus, a large proportion of the study popu-
lation was at risk of T2D, as age is a key risk factor for 
developing T2D [10]. Ideally, screening for T2D should 
begin from 35 years for all people and should take place 
in adults of all ages if they present with overweight or 
obesity and one or more risk factors for T2D [10, 48]. 
Younger individuals usually have a lower baseline risk 
of developing T2D, and they may have fewer risk factors 
that trigger a model’s criteria designed to detect indi-
viduals at elevated risk. The underestimation of risk in 
urban dwellers could result from the model inadequately 
accounting for the nutrition transition that occurs with 
urbanisation and the resultant increased risk of T2D [49].

Performance according to the method of T2D diagnosis
This study has shown that the models performed compa-
rably, whether FPG or HbA1c was used. This has impor-
tant implications for future screening of undiagnosed 
T2D. HbA1c may be more convenient to obtain when 
conducting epidemiological research as it doesn’t require 
fasting. It has long been accepted that FPG can be used 
to diagnose diabetes [50]. Relative to FPG, HbA1c has 

only been accepted as a screening and diagnostic test 
more recently, after much debate. Other than glycaemia, 
several factors can affect HbA1c levels [51]. For example, 
HbA1c can portray falsely high glucose levels when red 
blood cells have an increased lifespan and/or reduced 
turnover, as is found in untreated iron deficiency and 
certain haemoglobin variants [52]. Haemoglobinopathies 
have been found to be more prevalent in some LMICs 
[1].

Furthermore, it has been reported that HbA1c and FPG 
have slight differences in identifying different groups of 
people with diabetes [53, 54]. HbA1c levels have also 
been demonstrated to differ between races, potentially 
affecting the T2D prevalence when assessed by HbA1c 
and FPG [53, 55]. Furthermore, it has recently been sug-
gested by Chivese et al. [56] that a different HbA1c cut-off 
may need to be applied for individuals of African descent 
since the T2D HbA1c cut-off of 6.5% missed up to 42% 
and 35% of people with diabetes identified by OGTT and 
FPG, respectively. This does not imply that glucose-based 
measures are more accurate in classifying T2D; however, 
the discrepancy between tests may result in differing 
estimates of the prevalence of T2D [56]. Though the per-
formance of the risk prediction models in this study was 
comparable with both methods of diagnosis, they tended 
to underestimate risk when HbA1c was used. This find-
ing supports the suggestion of a lower HbA1c cut-off for 
individuals of African descent.

Strengths and limitations
This study has assisted with the generalisability of the 
ADRS in Black South Africans, who account for the 
greatest portion of people in South Africa [57]. As pre-
diction models commonly perform poorly in new popu-
lations compared to the development population [28], 
investigators tend to reject existing models and develop 
or fit a new one. This results in the loss of previous sci-
entific information and creates confusion amongst 
healthcare professionals as to which model to use. Bet-
ter practice involves updating and recalibrating existing 
prediction models to the population at hand [28]. This 
results in combined information from the original model 
and new individuals [58–60]. The combination of infor-
mation may improve the generalisability of the updated 
model to other population groups [28]. A potential limi-
tation of the study was the large amount of missing data 
for some variables, reducing the sample size available 
for validating each risk score. This could have negatively 
influenced their performance. Limited information was 
available for family history of T2D, which resulted in very 
small sample sizes for the ADA and IRS. The oral glucose 
tolerance test is considered to be the gold standard for 
diagnosing diabetes, and not having this measurement in 
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the SA-NW-PURE dataset could therefore be considered 
a limitation of the study.

Conclusion
Widespread laboratory measurements are not financially 
feasible in resource-scarce settings such as South Africa. 
Ideally, scarce resources should be allocated to those at 
highest risk of developing or having undiagnosed T2D. 
A two-step approach can thus be used, where a risk pre-
diction model comprised of non-invasive variables in the 
form of a questionnaire can guide healthcare profession-
als on whether a diagnostic test should be performed. 
While no model significantly outperformed others 
enough to be uniquely selected for routine risk stratifica-
tion use, based on the ease of use and the performance, 
it is recommended that the ADRS be used to screen for 
T2D in the Black population groups in South Africa. It 
can also be used as a health promotion tool when used 
as a self-completion questionnaire. Furthermore, using 
HbA1c as a means of diagnosis resulted in comparable 
performance with FPG. Therefore, further validation 
of risk prediction models can potentially make use of 
HbA1c as a method of diagnosis, given its convenience as 
it does not require fasting.
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