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Abstract
Background The cardiometabolic index (CMI) is a novel metric for assessing cardiometabolic health and type 2 
diabetes mellitus (DM), yet its relationship with insulin resistance (IR) and prediabetes (preDM) is not well-studied. 
There is also a gap in understanding the nonlinear associations between CMI and these conditions. Our study aimed 
to elucidate these associations.

Methods We included 13,142 adults from the National Health and Nutrition Examination Survey (NHANES) 2007–
2020. CMI was calculated by multiplying the triglyceride-to-high density lipoprotein cholesterol (TG/HDL-C) by 
waist-to-height ratio (WHtR). Using weighted multivariable linear and logistic regression explored the relationships of 
CMI with glucose metabolism markers, IR, preDM, and DM. Nonlinear associations were assessed using generalized 
additive models (GAM), smooth curve fittings, and two-piecewise logistic regression.

Results Multivariate regression revealed positive correlations between CMI and glucose metabolic biomarkers, 
including FBG (β = 0.08, 95% CI: 0.06–0.10), HbA1c (β = 0.26, 95% CI: 0.22–0.31), FSI (β = 4.88, 95% CI: 4.23–5.54), and 
HOMA-IR (β = 1.85, 95% CI: 1.56–2.14). There were also significant correlations between CMI and increased risk of IR 
(OR = 3.51, 95% CI: 2.94–4.20), preDM (OR = 1.49, 95% CI: 1.29–1.71), and DM (OR = 2.22, 95% CI: 2.00-2.47). Inverse 
nonlinear L-shaped associations were found between CMI and IR, preDM, and DM, with saturation inflection points at 
1.1, 1.45, and 1.6, respectively. Below these thresholds, increments in CMI significantly correlated with heightened risks 
of IR, preDM, and DM.

Conclusions CMI exhibited inverse L-shaped nonlinear relationships with IR, preDM, and DM, suggesting that 
reducing CMI to a certain level might significantly prevent these conditions.
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Introduction
Insulin resistance (IR) refers to reduced sensitivity of 
target tissues to insulin, resulting in diminished glucose 
uptake and utilization, consequently leading to elevated 
blood glucose levels.The IR is an important characteristic 
of type 2 diabetes mellitus (DM) and contributes to meta-
bolic syndrome, including hyperglycemia, dyslipidemia, 
and hypertension [1, 2]. Additionally, IR could influence 
myocardial metabolism, potentially contributing to sub-
clinical left ventricular dysfunction and heart failure [2, 
3]. While the hyperinsulinemic-euglycemic clamp and 
intravenous glucose tolerance test serve as gold standards 
for assessing IR [4, 5], their expense and limited accessi-
bility restrict their clinical utility. Currently, the homeo-
static model assessment of insulin resistance (HOMA-IR) 
is widely adopted for evaluating IR [6].

Prediabetes (preDM) increases the risk of cardiovas-
cular diseases (CVD) and type 2 DM [7]. The preDM is 
characterized by impaired glucose tolerance (IGT) or 
impaired fasting glucose (IFG), and elevated HbA1c lev-
els [8]. The global burden of preDM is substantial and ris-
ing [7], with an estimated 352 million individuals affected 
worldwide in 2017 [9]. In the United States (U.S.), preDM 
affects 25% of adolescents [8]. Globally, the incidence and 
mortality of DM are on the rise due to the aging popu-
lation, lifestyle changes, industrialization, and urbaniza-
tion [10]. There were 463 million people with type 2 DM 
in 2019, and by 2045 that number is expected to rise to 
548 million, according to the International Diabetes Fed-
eration (IDF) [11].

Studies have indicated correlations between obesity, 
waist circumference, dyslipidemia, and IR [12, 13]. The 
waist-to-height ratio (WHtR) serves as a comprehensive 
indicator, surpassing single measures in identifying obe-
sity and assessing risks for hypertension, CVD, and DM 
[14, 15]. IR can be distinguished in non-obese women 
with normal glucose levels using the TG/HDL-C [16]. 
Moreover, TG/HDL-C is linked to a higher likelihood of 
developing DM and is believed to have a linear relation-
ship with IR [17–19].

Wakabayashi et al. presented a new measure called the 
cardiometabolic index (CMI), calculated by multiplying 
WHtR by TG/HDL-C, that effectively predicts DM [20]. 
CMI integrates parameters of adiposity and lipids param-
eters and exhibits associations with non-alcoholic fatty 
liver disease (NAFLD), hyperuricemia, chronic kidney 
disease (CKD), CVD, and stroke [21–25]. CMI heightens 
the risk of cardiometabolic multimorbidity and may syn-
ergistically contribute to this risk with sarcopenia [26]. 
Higher CMI is linked to greater odds of DM prevalence 
and could serve as a cost-effective screening tool for the 

general population [27]. CMI is associated with ischemic 
stroke, and this relationship is stronger in women [25, 
28]. Additionally, in peripheral arterial disease patients, 
CMI is linked to the degree of atherosclerosis in the com-
mon carotid artery and leg artery ischemia [29].

However, the potential links of CMI with IR, and 
preDM, and the relationship between CMI and DM war-
rants further expansion. Consequently, this study exam-
ines the connections and nonlinear associations of CMI 
with IR, preDM, and DM using cross-sectional analysis 
on a large sample.

Methods
Data source and study population
The National Health and Nutrition Examination Survey 
(NHANES), administered by the National Center for 
Health Statistics (NCHS), is a cross-sectional survey that 
gathers comprehensive data every two years for a cycle. 
NHANES evaluates the health of non-institutionalized 
U.S. civilians through sophisticated sampling methods 
(stratified, multistage, probability cluster). Data from 
NHANES that includes demographics, physical exami-
nations, laboratory results, and disease-related ques-
tionnaires. The Institutional Review Board of the NCHS 
granted permission for the survey, and all participants 
gave written informed consent prior to taking part. More 
information about NHANES can be found at https://
www.cdc.gov/nchs/nhanes/index.htm.

Data from seven consecutive NHANES database 
cycles were used in this cross-sectional study (2007–
2008, 2009–2010, 2011–2012, 2013–2014, 2015–2016, 
2017–2018, and 2019–2020), encompassing 75,402 par-
ticipants. Following exclusion criteria, including individ-
uals aged < 18, pregnant participants, those with missing 
variables (exposure, outcome, and covariates), and out-
liers in CMI, the final sample size amounted to 13,142 
participants.

Exposure variable and outcome variables
CMI was the exposure variable, which was defined as 
WHtR*(TG/HDL-C), where WHtR represented waist cir-
cumference (cm) divided by height (cm), and TG/HDL-C 
was ratio of triglycerides (mmol/L) to high-density lipo-
protein cholesterol (mmol/L) [20]. Using an encircling 
tape measure, the waist circumference was measured 
above the tops of the bilateral iliac bones at the waist [30].

Outcome variables comprised biochemical markers of 
glucose metabolism, IR, preDM, and DM.

Biochemical markers of glucose metabolism serve as 
risk indicators for preDM and DM, including HOMA-
IR, fasting serum insulin (FSI, pmol/L), glycosylated 
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hemoglobin (HbA1c, %), and fasting blood glucose (FBG, 
mmol/L). To calculate HOMA-IR, the formula is: [FBG 
(mmol/L) * FSI (µU/ml)] / 22.5 [6]. Notably, FBG levels 
were measured in the morning after a 9-hour fast using 
venous blood samples. The samples were sent to Fairview 
Medical Center laboratories at the University of Minne-
sota for analysis in NHANES 2007–2013, and to the Uni-
versity of Missouri at Columbia for analysis in NHANES 
2013–2020. Detailed information on specimen collection 
and processing, could be seen in the Biospecimen Pro-
gram of NHANES [31].

Based on previous studies, IR in the general U.S. pop-
ulation was defined as HOMA-IR > 2.6 [32, 33]. In this 
study, preDM was defined based on laboratory testing 
and related questionnaires, encompassing any of the fol-
lowing criteria: 5.7% ≤ HbA1c < 6.5%, FBG levels from 
5.6 mmol/L to 6.9 mmol/L, Oral Glucose Tolerance Test 
(OGTT) with blood glucose levels between 7.8 and 11.0 
mmol/L at 2 h, or self-reported preDM status. DM was 
defined as FBG ≥ 7.0 mmol/L, HbA1c ≥ 6.5%, OGTT with 
blood glucose ≥ 11.1 mmol/L at 2 h, self-reported DM, or 
current use of glucose-lowering therapy [7, 34, 35].

Covariates
We included covariates potentially influencing both the 
exposure and outcome variables, drawn from demo-
graphic data and clinical expertise. Covariates in the 
study encompassed age, sex, ethnicity, body mass index 
(BMI), poverty-to-income ratio (PIR), blood pres-
sure, education, smoking status, marital status, alcohol 
use, physical activity, total cholesterol (TC, mmol/L), 
γ-glutamyl transferase (γ-GGT, IU/L), alanine amino-
transferase (ALT, IU/L), aspartate aminotransferase 
(AST, IU/L), serum uric acid (SUA, mg/dL), serum creat-
inine (SCR, mg/dL), and hemoglobin (Hb, g/dL), as well 
as disease including hypertension, CVD, and CKD.

Age was categorized into three groups: young (< 40 
years), middle-aged (≥ 40 to < 65 years), and old (≥ 65 
years). Participants self-reported their gender (male and 
female), ethnicity (Mexican American, Non-Hispanic 
White, Non-Hispanic Black, Other), marital status (mar-
ried/living with partner, widowed/divorced/single), level 
of education (high school or below, college or above), 
PIR, and smoking status (never, former, and current). 
BMI, calculated as weight divided by the height square 
(kg/m2), was categorized into normal (< 25), overweight 
(≥ 25 to < 30), and obese (≥ 30). Alcohol use was charac-
terized by consuming three or more beverages daily for 
females or four or more beverages daily for males, along 
with engaging in heavy drinking at least five times per 
month. Physical activity was assessed based on ques-
tionnaires regarding work or recreational activity, with 
individuals engaging in vigorous or both moderate to 
vigorous levels considered active. Hypertension was 

characterized by systolic blood pressure (SBP) ≥ 140 
mmHg, diastolic blood pressure (DBP) ≥ 90 mmHg, or 
taking antihypertensive drugs [36]. CVD was identified 
by self-reported angina, heart attack, coronary heart dis-
ease, stroke, or heart failure [37]. CKD was diagnosed 
as an estimated glomerular filtration rate (eGFR) of < 60 
mL/min/1.73 m2 or an albumin-to-creatinine ratio of 
≥ 30 mg/g, with eGFR determined using the CKD Epide-
miology Collaboration (CKD-EPI) equation derived from 
SCR values [38].

Statistical analysis
To obtain unbiased estimates from the complex 
NHANES design, all analyses incorporate sampling 
weights and we use Taylor series (linearization) to esti-
mate standard errors (SE). The study utilized R (version 
4.2.1) and EmpowerStats (version 2.0) for all analyses. 
A two-tailed p-value < 0.05 was considered statistically 
significant.

Baseline characteristics of participants were catego-
rized into four groups based on quartiles of CMI levels 
(Q1: 0.027–0.28, Q2: 0.28–0.49, Q3: 0.49–0.86, Q4: 0.86–
3.52). Categorical variables were displayed as frequencies 
and percentages (weighted %), while continuous variables 
were described using means (SE). Statistical differences 
between continuous variables were evaluated through 
the one-way Analysis of Variance (ANOVA), while dis-
tinctions among categorical variables were analyzed 
using the chi-square test.

Weighted multivariate linear regression was utilized 
to assess the associations between CMI and various 
biochemical indicators of glucose metabolism, includ-
ing FBG, HbA1c, FSI, and HOMA-IR. Weighted multi-
variate logistic regression was employed to evaluate the 
associations of CMI with IR, preDM, and DM. In accor-
dance with the guidelines outlined in the Strengthening 
the Reporting of Observational studies in Epidemiology 
(STROBE) statement [39], three adjustment models were 
utilized in this research. Model 1 utilized a univariate 
logistic regression model, while Model 2 was adjusted 
for age, gender, race, and BMI. Model 3 further adjusted 
for PIR, smoking status, alcohol use, marital status, edu-
cation, physical activity, hypertension, CVD, CKD, ALT, 
AST, γGGT, SUA, Hb, and TC). Additionally, sensitivity 
analyses were performed. We excluded individuals with 
preDM and DM to assess the association between CMI 
and biochemical markers of glucose metabolism, and 
evaluated the association between CMI and IR in dif-
ferent glucose metabolism status participants. We also 
included DM treatment (antidiabetic drugs or insulin) 
data to explore the association between CMI and IR in 
DM participants.

Furthermore, considering the potential nonlinear met-
abolic patterns in biomedicine, and previous findings of 
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nonlinear links between CMI and disease [40–42], we 
explored possible nonlinear associations. Generalized 
Additive Models (GAM) were utilized to analyze the 
nonlinear associations of CMI and IR, preDM, and DM 
through smooth curve fitting. When nonlinearities were 
detected, inflection points for the associations of CMI 
with IR, preDM, and DM were calculated using a two-
piecewise recursive algorithm. Threshold effect analysis 
was conducted using log likelihood ratio test to com-
pare the overall logistic regression model and two-piece-
wise logistic regression models. Additionally, subgroup 
smooth curve fitting based on age groups, gender, race, 
and BMI groups was performed to assess the robustness 
and possible differences of the results.

Results
Baseline characteristics of the study population
A total of 13,142 adult participants were ultimately 
included in this study, among whom 5,851 had preDM 
and 2,701 had DM (Fig.  1). The baseline characteristics 
of participants were outlined based on the quartiles of 
CMI (Table  1). Compared to participants in the lowest 
quartile of CMI (Q1), individuals in the highest quartile 
(Q4) were older, predominantly male, increasing propor-
tion of Mexican American, had lower PIR, higher preva-
lence of obesity, higher marriage rate, lower education, 
higher prevalence of current or past smoking, higher 
proportion of alcohol use, more inactive in physical 

activity, and higher levels of FBG, HbA1c, FSI, HOMA-
IR, TC, ALT, AST, γGGT, SCR, SUA, and Hb, as well as 
higher prevalence of hypertension, CVD, and CKD (all 
P < 0.05). Importantly, participants with higher CMI lev-
els exhibited higher prevalence of IR, preDM, and DM 
(all P < 0.05) (Fig. 2A).

Associations between CMI and biochemical markers of 
glucose metabolism
We investigated the relationships between CMI and 
preDM/DM risk markers (Table  2). Multivariate linear 
regression analyses, adjusted for confounders (Model 
3), revealed CMI was positively associated with FBG 
(β = 0.53, 95% CI: 0.43–0.63), HbA1c (β = 0.26, 95% CI: 
0.22–0.31), FSI (β = 4.88, 95% CI: 4.23–5.54), and HOMA-
IR (β = 1.85, 95% CI: 1.56–2.14). CMI quartile increments 
(Q3 and Q4) were consistently linked to elevated levels of 
these markers (all P for trend < 0.001). Sensitivity analy-
ses, excluding patients with preDM/DM (n = 8,555), con-
firmed these findings (Supplementary file: Table S1).

Associations of CMI with IR, preDM, and DM
In all three logistic regression models, there was a posi-
tive correlation between CMI and the prevalence of 
IR (Model 1: OR = 8.27, 95% CI: 6.88–9.93; Model 2: 
OR = 3.76, 95% CI: 3.18–4.44; Model 3: OR = 3.51, 95% 
CI: 2.94–4.20). Notably, after adjusting for potential con-
founders (Model 3), the odds of IR become 2.51 times 

Fig. 1 Participants selection of the study from the NHANES 2007–2020
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Characteristics Overall Quartiles of CMI P-value
Q1 Q2 Q3 Q4
(0.027, 0.28) (0.28, 0.49) (0.49, 0.86) (0.86, 3.52)

N 13,142 3286 3285 3285 3286
Age (years) 47.46(0.28) 43.85(0.54) 47.99(0.42) 48.67(0.40) 49.55(0.34) < 0.001
Age group, N (%) < 0.001
Young 4327(35.55) 1448(45.64) 1047(35.23) 958(32.85) 874(27.90)
Middle 2984(18.04) 593(14.49) 792(19.79) 834(19.93) 765(18.17)
Old 5831(46.41) 1241(39.87) 1453(44.98) 1488(47.23) 1649(53.93)
Gender, N (%) < 0.001
Female 6580(50.17) 1985(61.69) 1724(51.89) 1541(47.63) 1330(38.82)
Male 6562(49.83) 1297(38.31) 1568(48.11) 1739(52.37) 1958(61.18)
Race/Ethnicity, N (%) < 0.001
Mexican American 1913(8.19) 291(5.48) 400(6.77) 577(9.91) 645(10.82)
Non-Hisp. White 5648(69.25) 1301(67.60) 1421(70.76) 1346(66.49) 1580(72.08)
Non-Hisp. Black 2661(9.72) 960(14.01) 788(10.94) 590(8.97) 323(4.70)
Other Race 2920(12.85) 730(12.91) 683(11.53) 767(14.63) 740(12.40)
PIR 3.08(0.04) 3.27(0.04) 3.14(0.05) 2.99(0.05) 2.92(0.05) < 0.001
SBP (mmHg) 120.89(0.23) 116.47(0.38) 120.49(0.36) 121.77(0.40) 125.05(0.39) < 0.001
DBP (mmHg) 70.52(0.21) 68.08(0.26) 69.73(0.31) 70.99(0.34) 73.44(0.31) < 0.001
BMI (kg/m2) 28.98(0.10) 24.60(0.11) 28.12(0.14) 30.60(0.16) 32.86(0.18) < 0.001
BMI group, N (%) < 0.001
Normal 3783 (28.79) 1891 (57.55) 1024 (31.17) 572 (17.41) 296 (9.01)
Overweight 4371 (33.26) 923 (28.09) 1254 (38.17) 1158 (35.25) 1036 (31.53)
Obesity 4988 (37.95) 472 (14.36) 1007 (30.65) 1555 (47.34) 1954 (59.46)
Height (cm) 169.10(0.12) 168.00(0.24) 169.16(0.23) 169.14(0.22) 170.15(0.25) < 0.001
Waist circumference (cm) 99.29(0.24) 86.93(0.26) 97.22(0.35) 103.68(0.38) 110.08(0.40) < 0.001
Marital status, N (%) < 0.001
Married/Living with Partner 7918(64.17) 1772(60.36) 1963(63.07) 2053(65.24) 2130(68.22)
Widowed/Divorced/Singled 5224(35.83) 1510(39.64) 1329(36.93) 1227(34.76) 1158(31.78)
Education, N (%) < 0.001
High school or below 5837(36.98) 1177(29.22) 1373(34.74) 1561(39.73) 1726(44.72)
College or above 7305(63.02) 2105(70.78) 1919(65.26) 1719(60.27) 1562(55.28)
Smoking status, N (%) < 0.001
Never 7290(55.61) 2062(61.97) 1908(59.30) 1743(52.54) 1577(48.18)
Former 3214(25.83) 658(22.64) 747(23.82) 884(27.46) 925(29.61)
Now 2638(18.57) 562(15.40) 637(16.88) 653(20.00) 786(22.20)
Alcohol use, N (%) 2792(21.57) 655(19.93) 670(20.98) 717(23.03) 750(22.47) < 0.001
Physical activity, N (%) < 0.001
Inactive 8063(56.70) 1708(45.38) 1978(56.06) 2169(61.59) 2208(64.49)
Active 5079(43.30) 1574(54.62) 1314(43.94) 1111(38.41) 1080(35.51)
Laboratory data
FBG (mmol/L) 5.91(0.02) 5.45(0.02) 5.70(0.02) 5.96(0.03) 6.56(0.06) < 0.001
HbA1c (%) 5.62(0.01) 5.37(0.01) 5.51(0.01) 5.65(0.02) 5.95(0.03) < 0.001
FSI (µU/ml) 12.91(0.17) 7.17(0.20) 10.20(0.20) 14.44(0.36) 20.16(0.45) < 0.001
HOMA-IR 3.66(0.06) 1.82(0.08) 2.69(0.07) 3.97(0.11) 6.25(0.19) < 0.001
ALT (IU/L) 24.83(0.20) 20.74(0.41) 22.92(0.31) 26.09(0.40) 29.83(0.38) < 0.001
AST (IU/L) 24.67(0.18) 24.27(0.35) 24.12(0.33) 24.37(0.30) 25.93(0.38) 0.002
γGGT (IU/L) 27.51(0.34) 21.64(0.57) 24.88(0.58) 28.13(0.59) 35.72(0.73) < 0.001
SUA (mg/dL) 5.48(0.02) 4.82(0.03) 5.32(0.03) 5.71(0.03) 6.11(0.04) < 0.001
Hb (g/dL) 14.36(0.03) 14.00(0.04) 14.29(0.04) 14.45(0.03) 14.74(0.04) < 0.001
SCR (mg/dL) 0.87(0.00) 0.84(0.01) 0.87(0.01) 0.88(0.01) 0.90(0.01) < 0.001
eGFR (mL/min/1.73m2) 95.18(0.36) 99.34(0.67) 94.61(0.45) 93.76(0.51) 92.76(0.53) < 0.001
TC (mmol/L) 4.97(0.02) 4.75(0.03) 4.88(0.02) 5.01(0.03) 5.25(0.03) < 0.001

Table 1 Baseline demographic and clinical characteristics of participants according to the CMI quartiles
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higher for each unit increase in CMI. Moreover, the sta-
tistical significance of the positive trend in relation to 
increased risk of IR remained when CMI was divided into 
quartiles, showing a progressive association with higher 
quartiles of CMI (P for trend < 0.001) (Table 3). We also 
stratified the analysis of the correlation between CMI and 
IR according to glucose metabolism status into normal, 
preDM, and DM subgroups (the mean of HOMA-IR was 
2.13, 3.56, and 7.95, respectively), and the positive corre-
lation persisted after multivariable adjustments (Supple-
mentary file: Table S2). Notably, in DM participants, the 
risk between CMI and IR was lower in group with DM 
treatment than without DM treatment (OR: 3.74 vs. 5.82) 
(Supplementary file: Table S3).

The relationship between CMI and the prevalence of 
preDM was positively correlated across all three logistic 
regression models (Model 1: OR = 2.68, 95% CI: 2.37–
3.03; Model 2: OR = 1.74, 95% CI: 1.54–1.96; Model 3: 
OR = 1.49, 95% CI: 1.29–1.71). It is noteworthy that when 
accounting for potential confounders (Model 3), per one 
unit rise in CMI was inked to a 49% rise in the risk of 
preDM. Furthermore, the statistical significance of the 
trend remained when CMI was divided into quartiles, 
showing a consistent increase in the risk of preDM with 
higher quartiles of CMI (P < 0.001 for trend) (Table 3).

Similarly, the link between CMI and the prevalence 
of DM was positively correlated in all three logis-
tic regression models (Model 1: OR = 2.53, 95% CI: 

Fig. 2 The weighted (%) prevalence of IR, preDM, and DM by quartiles of CMI (A). Associations between quartiles of CMI and the prevalence of IR, preDM, 
and DM (B). The OR (95% CI) adjusted age, gender, race, BMI, PIR, education, marital status, smoking status, alcohol use, physical activity, hypertension, 
CVD, CKD, ALT, AST, γGGT, SUA, Hb, and TC

 

Characteristics Overall Quartiles of CMI P-value
Q1 Q2 Q3 Q4
(0.027, 0.28) (0.28, 0.49) (0.49, 0.86) (0.86, 3.52)

TG (mmol/L) 1.30(0.01) 0.63(0.00) 0.97(0.01) 1.35(0.01) 2.31(0.02) < 0.001
HDL-C (mmol/L) 1.41(0.01) 1.81(0.01) 1.47(0.01) 1.27(0.01) 1.06(0.00) < 0.001
Hypertension, N (%) 5400(36.80) 920(22.46) 1294(33.97) 1500(41.64) 1686(50.01) < 0.001
CVD, N (%) 1377(8.47) 200(5.14) 339(7.58) 354(8.23) 484(13.07) < 0.001
CKD, N (%) 2211(13.06) 397(10.13) 527(11.78) 545(12.71) 742(17.76) < 0.001
IR, N (%) 6322(45.21) 523(13.70) 1265(35.32) 1948(57.49) 2586(76.36) < 0.001
preDM, N (%) 5851(44.71) 1220(34.93) 1513(45.13) 1566(48.66) 1552(50.71) < 0.001
DM, N (%) 2704(15.35) 279(5.35) 511(10.51) 781(17.98) 1133(28.16) < 0.001
DM treatment, N (%) 1578(8.92) 160(3.09) 289(5.43) 490(10.84) 639(16.70) < 0.001
WHtR 0.59(0.00) 0.52(0.00) 0.58(0.00) 0.61(0.00) 0.65(0.00) < 0.001
TG/HDL-C 1.08(0.01) 0.36(0.00) 0.67(0.00) 1.07(0.00) 2.24(0.02) < 0.001
CMI 0.65(0.01) 0.18(0.00) 0.38(0.00) 0.65(0.00) 1.43(0.01) < 0.001
CMI, Cardiometabolic index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; PIR, Poverty-to-income ratio; BMI, Body mass index; FBG, Fasting blood 
glucose; HbA1c, Hemoglobin A1c; FSI, Fasting serum insulin; HOMA-IR, Homeostasis model assessment of insulin resistance; ALT, Alanine aminotransferase, AST, 
Aspartate aminotransferase; γGGT, Gama-glutamyl transpeptidase; SUA, Serum uric acid; Hb, hemoglobin; SCR, Serum creatinine; eGFR, Estimated glomerular 
filtration rate; TC, Total cholesterol; TG, Triglyceride; HDL-C, High-density lipoprotein cholesterol; CVD, Cardiovascular disease; CKD, Chronic kidney disease; IR, 
Insulin resistance; preDM, Prediabetes; DM, Diabetes mellitus; WHtR, Ratio of waist circumference to height

Table 1 (continued) 
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2.34–2.74; Model 2: OR = 2.15, 95% CI: 1.97–2.35; Model 
3: OR = 2.22, 95% CI: 2.00–2.47). Specifically, following 
the adjustment for potential confounders (Model 3), an 
increment of one unit in CMI was linked to 1.22 times 
higher in the risk of DM. Moreover, when CMI was cat-
egorized into quartiles, statistical significance remained, 
with higher quartiles of CMI progressively associated 
with greater risk of DM (P for trend < 0.0001) (Table 3).

Adjusted Model 3, incorporating all other covariates, 
presents the ORs and their 95% CIs for the associations 
of CMI quartiles with the risk of IR, preDM, and DM, 
depicted in a forest plot (Fig. 2B).

Nonlinear associations
To visually assess the dose-response effect of CMI, we 
used GAM and smooth curve fitting to examine the non-
linear associations of CMI with the risks of IR, preDM, 

Table 2 The associations between CMI and biochemical markers of glucose metabolism
Outcomes β (95% CI) P-trend

CMI (continuous) Quartiles of CMI (categorical)
Q1 Q2 Q3 Q4

FBG (mmol/L)
Model 1 0.77(0.67,0.87) Ref 0.25(0.19,0.30) 0.51(0.44,0.58) 1.12(1.00,1.23) < 0.001
Model 2 0.53(0.43, 0.62) Ref 0.01(-0.05, 0.08) 0.15(0.07, 0.23) 0.64(0.52, 0.76) < 0.001
Model 3 0.53(0.43, 0.63) Ref 0.04(-0.03, 0.10) 0.19(0.10, 0.28) 0.65(0.51, 0.79) < 0.001
HbA1c (%)
Model 1 0.39(0.34,0.44) Ref 0.14(0.11,0.18) 0.29(0.25,0.32) 0.58(0.52,0.64) < 0.001
Model 2 0.28(0.23, 0.32) Ref 0.02(-0.02, 0.06) 0.1(0.06, 0.14) 0.35(0.30, 0.41) < 0.001
Model 3 0.26(0.22, 0.31) Ref 0.03(-0.01, 0.06) 0.11(0.07, 0.15) 0.34(0.27, 0.40) < 0.001
FSI (µU/ml)
Model 1 8.76(7.93,9.59) Ref 3.03(2.55, 3.51) 7.27(6.42, 8.13) 12.99(11.95,14.03) < 0.001
Model 2 5.05(4.37, 5.73) Ref 0.31(-0.25, 0.87) 2.57(1.72, 3.42) 6.57(5.74, 7.39) < 0.001
Model 3 4.88(4.23, 5.54) Ref 0.24(-0.31, 0.79) 2.33(1.47, 3.20) 6.09(5.22, 6.96) < 0.001
HOMA-IR
Model 1 3.08(2.75,3.42) Ref 0.86(0.67,1.06) 2.14(1.83,2.45) 4.43(3.99,4.86) < 0.001
Model 2 1.84(1.55, 2.13) Ref -0.11(-0.35, 0.13) 0.49(0.14, 0.83) 2.18(1.83, 2.52) < 0.001
Model 3 1.85(1.56, 2.14) Ref -0.08(-0.32, 0.15) 0.5(0.16, 0.84) 2.12(1.71, 2.53) < 0.001
Model 1 was univariate linear regression model

Model 2 adjusted for age, gender, race, and BMI.

Model 3 adjusted for age, gender, race, BMI, PIR, education, marital status, smoking status, alcohol use, physical activity, hypertension, CVD, CKD, ALT, AST, γGGT, 
SUA, Hb, and TC.

Table 3 The associations of CMI with IR, preDM, and DM
Outcomes OR (95% CI) P-trend

CMI (continuous) Quartiles of CMI (categorical)
Q1 Q2 Q3 Q4

IR
Model 1 8.27(6.88,9.93) Ref 3.44(2.84, 4.17) 8.52(7.01,10.35) 20.35(16.98,24.38) < 0.001
Model 2 3.76(3.18,4.44) Ref 2.17(1.76,2.68) 4.15(3.36,5.13) 8.15(6.76,9.83) < 0.001
Model 3 3.51(2.94,4.20) Ref 2.14(1.72,2.67) 3.99(3.17,5.02) 7.73(6.24,9.57) < 0.001
preDM
Model 1 2.68(2.37,3.03) Ref 1.74(1.52,1.99) 2.49(2.19,2.84) 4.10(3.55,4.74) < 0.001
Model 2 1.74(1.54,1.96) Ref 1.25(1.06,1.47) 1.57(1.34,1.84) 2.27(1.90,2.71) < 0.001
Model 3 1.49(1.29,1.71) Ref 1.17(0.99,1.38) 1.36(1.14,1.62) 1.80(1.45,2.23) < 0.001
DM
Model 1 2.53(2.34,2.74) Ref 2.08(1.67,2.59) 3.88(3.19,4.73) 6.94(5.72,8.42) < 0.001
Model 2 2.15(1.97,2.35) Ref 1.40(1.11,1.77) 2.31(1.86,2.86) 3.99(3.19,5.00) < 0.001
Model 3 2.22(2.00,2.47) Ref 1.39(1.09,1.78) 2.32(1.81,2.96) 4.03(3.09,5.25) < 0.001
Model 1 was univariate logistic regression model

Model 2 adjusted for age, gender, race, and BMI.

Model 3 adjusted for age, gender, race, BMI, PIR, education, marital status, smoking status, alcohol use, physical activity, hypertension, CVD, CKD, ALT, AST, γGGT, 
SUA, Hb, and TC.
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and DM, further confirming our findings. In Model 3 
adjusted for covariates, nonlinear and inverse L-shaped 
associations were detected between CMI and IR, preDM, 
and DM (Fig. 3). Threshold effect analysis revealed inflec-
tion points at 1.1, 1.45, and 1.6, respectively (Table  4). 
Prior to the inflection points, CMI exhibited significant 
positive correlations with all three outcome variables, 
with ORs (95% CI) of 1.27 (1.25, 1.29), 1.05 (1.04, 1.07), 
and 1.12 (1.10, 1.14) with per 0.1 CMI increase. How-
ever, beyond the inflection points, although the risks of 
IR, preDM, and DM remained elevated, the associations 
of CMI with these outcomes were not significant and 
tended to plateau.

In subgroup analyses based on impaired glucose 
metabolism status, similar nonlinear inverse L-shaped 
associations were found between CMI and IR in the 
normal, preDM, and DM subgroups (Supplementary 
file: Figure S1). Stratified subgroup analyses by age, sex, 
race, and BMI groups revealed persistent nonlinear rela-
tionships between CMI and IR risk (Supplementary file: 
Figure S1). However, the nonlinear associations of CMI 
with preDM and DM seemed partially inconsistent. The 
linear positive correlations of CMI with preDM, could be 
found in the old age group, male, and Mexican Ameri-
can ethnicity. While, the inverted U-shaped curve asso-
ciation of CMI with DM, could be found in Non-Hisp. 

Table 4 Threshold effect analysis of CMI on IR, preDM, and DM using a two-piecewise logistic regression model
Inflection point Adjusted OR (95% CI), P value P for log-likelihood ratio test

(per 0.1 increase of CMI)
IR
Total 1.16 (1.14, 1.17) < 0.0001
Fitting by two-piecewise
 logistic regression model

1.1 < 0.001

CMI < 1.1 1.27 (1.25, 1.29) < 0.0001
CMI > 1.1 1.01 (0.99, 1.03) 0.2553
preDM
Total 1.04 (1.03, 1.05) < 0.0001
Fitting by two-piecewise
 logistic regression model

1.45 0.022

CMI < 1.45 1.05 (1.04, 1.07) < 0.0001
CMI > 1.45 1.01 (0.98, 1.04) 0.5562
DM
Total 1.08 (1.07, 1.09) < 0.0001
Fitting by two-piecewise
 logistic regression model

1.6 < 0.001

CMI < 1.6 1.12 (1.10, 1.14) < 0.0001
CMI > 1.6 1.01 (0.98, 1.03) 0.5517
Adjusted OR (95% CI) represented results for adjustment of model 3, including age, gender, race, BMI, PIR, education, marital status, smoking status, alcohol use, 
physical activity, hypertension, CVD, CKD, ALT, AST, γGGT, SUA, Hb, and TC.

Fig. 3 Smooth curve fitting using GAM to evaluate the associations between CMI and the prevalence of IR (A), preDM (B), and DM (C). The nonlinear 
inverse L-shaped curves between CMI and the prevalence of IR, preDM, and DM were found (P for log likelihood ratio < 0.05). The solid red line and dashed 
blue line represent the estimated values and their corresponding 95% CI. Adjustment factors included age, gender, race, BMI, PIR, education, marital 
status, smoking status, alcohol use, physical activity, hypertension, CVD, CKD, ALT, AST, γGGT, SUA, Hb, and TC
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Black ethnicity, and normal BMI group (Supplementary 
file: Figures S3-S4). In DM participants categorized by 
treatment, the inflection point and plateau of CMI and IR 
risk inverted L-shape curves were lower in the treatment 
group (Supplementary file: Figures S5).

Summary of results
To get an overview of main results, we summarize the 
presentation of study variables and correlations (Fig. 4). 
In 13,142 U.S. participants, we investigated the asso-
ciations between CMI and glucose metabolism markers 
(FBG, HbA1c, FSI, HOMA-IR), IR, preDM, and DM. The 
main results for Model 3 (continuous or categorical CMI) 
in Tables 2 and 3 are presented visually in the form of for-
est plots. Furthermore, CMI has nonlinear correlations 
with IR, preDM, and DM with inflection points of 1.1, 
1.45 and 1.6 respectively.

Discussion
We sought to fill the knowledge gap by studying the con-
nections between CMI, and glucose metabolism markers, 
IR, preDM, and DM. This cross-sectional study of U.S. 
adults showed a positive association between CMI and 
biochemical markers of glucose metabolism after adjust-
ing for confounding factors. Additionally, we identified 
correlations between CMI and higher risk of IR, preDM 
and DM. Notably, the relationships between CMI and 
these conditions followed nonlinear inverted-L shapes, 
with inflection points of 1.1, 1.45 and 1.6 respectively. 
Below these thresholds, CMI demonstrated a significant 

positive correlation with IR, preDM, and DM. However, 
when CMI is higher than inflection point, their correla-
tion is not significant. It is suggested that CMI may act 
as a surveillance parameter for impaired glucose metab-
olism and provide evidence for risk assessment of IR, 
preDM and DM. This study could potentially be applied 
in the general population or clinical practice based on the 
inverted L-shaped dose-response relationships.

Men and older adults had relatively higher prevalence 
of metabolic syndrome [43]. Obesity is associated with 
increased risk of metabolic issues like high waist circum-
ference, high TG, and low HDL-C [44]. Similarly, our 
results suggest that participants in the highest quartile 
group Q4 of CMI were older, male, and obese. The CMI, 
derived from TG/HDL-C and WHtR, reflects CVD risk 
factors including dyslipidemia, DM, and hypertension 
[20, 21, 45]. Previous studies have linked TG/HDL-C to 
increased risk of IR and DM [17, 18]. WHtR is recognized 
as a predictor for DM and CVD, with a recommended 
threshold below 0.5 [46]. WHtR is linked to dyslipidemia 
(such as high TG, high LDL-C, and low HDL-C), and is a 
risk factor for CVD [47]. The CMI combines WHtR and 
TG/HDL-C, suggesting a potential role in CVD.

Based on a retrospective study of 15,453 Japanese 
adults, Zhao et al. found a nonlinear association between 
CMI and DM, with an inflection point at 1.01 [40]. 
While, our cross-sectional study revealed an inflection 
point at 1.6 between CMI and DM. Wu et al. observed in 
patients with type 2 DM that increased CMI was signifi-
cantly correlated with IR in a nonlinear relationship [48]. 

Fig. 4 Overview of study results. The left side mainly describes the study population and variables, and the right side shows the main results of correlations
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Our research expands upon this by identifying a similar 
nonlinear association between CMI and IR across normal 
and preDM participants, not limited to DM participants. 
Notably, as far as we know, no reports were found regard-
ing the association between CMI and preDM. Similarly, 
Liu et al. reported TG/HDL-C to be linked with IR, 
impaired fasting glucose (IFG), and DM [33], with IFG 
being encompassed within the preDM criteria [7, 8]. In 
summary, our study underscored the positive correlation 
of CMI with FBG, HbA1c, FSI, and the HOMA-IR, estab-
lishing independent nonlinear inverted L-shaped correla-
tions between CMI and IR, preDM, and DM.

One study suggested a link between central body fat 
accumulation and the pathogenesis of IR and DM [49]. 
Furthermore, WHtR has been proposed as a better 
indicator than BMI for identifying CVD risk factors or 
metabolic syndrome, including DM and IR [15, 46, 50]. 
Additionally, TG/HDL-C has been identified as a useful 
marker for DM and IR [17, 19]. Interestingly, log (TG/
HDL-C) as an atherogenic index of plasma (AIP), is a 
marker of CVD. Study findings showed nonlinear posi-
tive associations between AIP and IR and DM, and in 
women, there was a significant relationship between AIP 
and preDM and DM [32, 51]. The TG/HDL-C, reflecting 
lipid levels indirectly, demonstrates potential associations 
with IR, preDM, and DM. Similar to our study, a longi-
tudinal study of Chinese middle-aged and elderly popu-
lation found a 78% increased risk of type 2 DM among 
those with high baseline CMI [52].

Elevated CMI, indicative of higher WHtR and/or TG/
HDL-C, suggesting the potential presence of abdomi-
nal obesity and dysregulated lipid metabolism. Obesity 
is linked to increased risk of IR and type 2 DM [53, 54]. 
Extra fat tissue releases increased levels of pro-inflam-
matory cytokines, free fatty acids, glycerol, and other fac-
tors that contribute to IR, hindering glucose uptake into 
tissue cells and impairing insulin’s metabolic function, 
thereby raising blood glucose levels [55]. Additionally, 
individuals with abdominal obesity exhibit reduced insu-
lin receptor numbers and affinity in target tissues, leading 
to decreased glucose utilization efficiency. Lower levels 
of HDL-C may adversely affect β-cell function, reducing 
insulin output and sensitivity [53, 56]. Notably, postpran-
dial plasma TG levels significantly increase in patients 
with preDM and DM when IR is present [57]. These find-
ings intricately connect obesity and dyslipidemia with IR, 
preDM, and DM, suggesting CMI as a potentially valu-
able indicator.

Nonlinear associations between CMI and IR, preDM, 
and DM have been underexplored [40, 48]. Our study 
found that CMI was associated with IR, preDM and DM 
in a nonlinear inverted-L shape, with inflection points 
of 1.1, 1.45 and 1.6, respectively. This threshold satura-
tion effect is beneficial for clinical practice reference, i.e. 

when CMI is below the inflection point, the risk of IR, 
preDM and DM increases with increasing CMI. How-
ever, mitigating obesity and lipid levels to lower CMI did 
not significantly reduce the risk of IR, preDM, and DM 
when CMI exceeded the inflection point. The inverted 
L-shaped phenomenon of CMI with IR, preDM and DM 
reflects an increase in risk followed by a slowdown and 
a plateau. This could be caused by metabolic abnormali-
ties (increased CMI), visceral obesity, and excess fat lead-
ing to cardiovascular and endocrine adaptive changes, 
in line with the obesity paradox in epidemiology [58, 
59]. Additionally, our study found gender differences of 
CMI-preDM curve, which was linear for men. This may 
be due to estrogen in women may protect against preDM 
and DM [60]. Addressing other DM risk factors, such as 
high-sugar diet, sedentary lifestyle, smoking, and comor-
bidities like hypertension, hyperuricemia, and polycystic 
ovary syndrome, may be necessary to reduce risk [34, 61]. 
Furthermore, in the U.S., CMI is associated with NAFLD, 
fibrosis, CKD, microalbuminuria, depression, and is vital 
for predicting all-cause mortality in the elderly [24, 41, 
42, 62, 63]. CMI may represent a significant modifiable 
risk factor for cardiometabolic diseases, playing a critical 
role in public health and prevention strategies.

Our study has several strengths. Firstly, it benefits 
from a large, nationally representative sample size that 
underwent weighted analysis, providing estimates for 
the U.S. adults. Secondly, our definition of preDM and 
DM extended beyond FBG and self-reported condition, 
but included 2-hour OGTT and HbA1c measurements 
to minimize potential misdiagnoses. Thirdly, CMI, com-
pared to HOMA-IR, integrates obesity and lipid param-
eters, offering a more accessible, cost-effective, and 
clinically practical measure. Fourthly, we examined both 
categorical and continuous CMI as independent vari-
ables, adjusting for multiple covariates to assess their 
associations with glucose metabolic markers, IR, preDM, 
and DM risk. Additionally, we explored the nonlinear 
relationship between continuous CMI and IR, preDM, 
and DM, identifying inflection points in the inverse 
L-shaped relationship. Finally, sensitivity analyses were 
conducted, including analyses in relationships of CMI 
with glucose metabolic biochemical markers and IR after 
excluding preDM and DM, ensured the robustness of our 
findings.

Some limitations we should be aware of. Firstly, the 
definition of DM in our research pertains to type 2 DM, 
and the results may not be generalizable to type 1 DM. 
Moreover, the nonlinear associations and their inflection 
points identified in the U.S. adult population may not be 
universally applicable to other regions globally. Secondly, 
despite adjusting for various covariates, potential biases 
from uncontrolled or unmeasured confounding factors, 
such as dietary habits and family history of DM, cannot 
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be ruled out. Given the nature of cross-sectional study, 
causal relationships between CMI and various outcome 
variables cannot be established, only associations can be 
inferred. Despite these limitations, our findings expand 
the understanding of the link between abnormal glucose 
metabolism and CMI, providing insights and clues for 
clinical practice in risk management of IR, preDM, and 
DM. Furthermore, research has shown that alterations 
over time in CMI could be indicative of future risk in 
DM [52]. Hence, future research could explore the role of 
baseline CMI and its variability in predicting IR, preDM, 
and DM. Moreover, the inclusion of more metabolic indi-
cators through machine learning will help in the early 
detection, prevention and management of DM in the 
future [64].

Conclusions
In conclusion, CMI is linked to abnormal glucose metab-
olism. Importantly, CMI demonstrates inverse L-shaped 
nonlinear relationships with IR, preDM, and DM, with 
inflection points at 1.1, 1.45, and 1.6, respectively. Below 
these thresholds, higher CMI is significantly linked to 
elevated risks of IR, preDM, and DM. These results imply 
that lowering CMI within a specific range might poten-
tially benefit the prevention and management of IR, 
preDM, and DM.
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