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Abstract 

Background Studies evaluating the association between monocyte chemoattractant protein‑1 (MCP‑1) ‑2518 A > G 
(rs1024611) polymorphism and type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) are contradictory. 
The present study aims to provide a comprehensive assessment and more reliable estimation of the relationship 
between the MCP‑1 rs1024611 polymorphism and T2DM and DN risk.

Methods Eligible articles were retrieved from the PubMed, Web of Science, EMBASE, Cochrane, and China National 
Knowledge Infrastructure databases. The effect summary odds ratios (ORs) and 95% confidence intervals (CIs) were 
obtained to calculate the summary effect size. Heterogeneity was analyzed by subgroup analysis and meta‑regres‑
sion. Publication bias was tested using funnel plots and Egger’s test.

Results In total, sixteen studies were included. Thirteen studies involving 2,363 patients with T2DM and 4,650 healthy 
controls found no significant association between the MCP‑1 rs1024611 polymorphism and T2DM in the overall 
population. Ethnicity stratification found an association between the GG + GA genotype and decreased T2DM risk 
in Caucasians (OR = 0.79, 95% CI: 0.66–0.93, P = 0.006; PQ = 0.372). No significant risks were found in the Asian popu‑
lation for any genetic models. Seven studies found an association between the GG + GA genotype and DN risk 
in the Asian population (OR = 1.37, 95% CI: 1.11–1.71, P = 0.004, PQ = 0.222). No significant risks were found in the Cau‑
casian population with any genetic models. There were no statistically significant differences in genotype distribution 
between patients with T2DM and DN in Asians or Caucasians. Meta‑regression revealed that genotyping method 
was a major driver of heterogeneity in five genetic models (GG + GA vs. AA: P = 0.032; GG vs. GA + AA: P = 0.028; GG vs. 
AA: P = 0.035; GG vs. GA: P = 0.041; G vs. A: P = 0.041).

Conclusion The MCP‑1 rs1024611 polymorphism is associated with susceptibility to T2DM in Caucasians and DN 
in Asians. Larger, well‑designed cohort studies are needed in the future to verify this association.
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Background
Type 2 diabetes mellitus (T2DM) is a major global health 
problem and its global prevalence is increasing annually 
[1]. Approximately 536.6 million people (global preva-
lence: 10.5%) aged 20–79 years lived with DM in 2021, 
which was projected to rise to 783.2 million (global 
prevalence: 12.2%) by 2045 [2]. Microangiopathy is a spe-
cific pathology of T2DM, including diabetic nephropa-
thy (DN), diabetic neuropathy, and diabetic retinopathy. 
DN, as a gradually developing kidney disease, is a criti-
cal chronic complication of T2DM and the main cause of 
end-stage renal disease [3]. DN can be difficult to reverse, 
thus causing cardiovascular and cerebrovascular disease 
and presenting an enormous economic burden to society. 
Given the progression of diabetes and the lack of a clear 
cure, elucidation of the molecular mechanisms of T2DM 
and DN is urgently needed to prevent and treat diabetes.

The etiology and pathogenesis of T2DM and DN have 
not been fully elucidated. Recently, the theory of inflam-
matory injury has received much attention. Evidence 
from many clinical and experimental studies shows that 
T2DM and DN are natural, immune, chronic, low-grade, 
inflammatory diseases [4–6]. Monocyte chemoattractant 
protein-1 (MCP-1) is an important chemokine that par-
ticipates in inflammatory process regulation by activating 
monocytes and macrophage accumulation in damaged 
tissues [7]. Several studies have shown that MCP-1 plays 
a crucial role in inflammatory and immune diseases [8, 
9]. An early study showed that serum MCP-1 levels were 
positively correlated with urinary albumin excretion and 
the degree of renal damage [10]. These studies suggest 
that MCP-1 is involved in glomerular injury and T2DM 
and DN occurrence and development. Single-nucleo-
tide polymorphisms (SNPs), the most common human 
genetic variation, can affect gene expression and be 
used to predict disease risk [11]; the MCP-1 -2518 A > G 
(rs1024611) gene mutation stimulated MCP-1 expression 
following the inflammatory response [12]. In addition, 
Zakharyan et al. reported that GG genotype carriers had 
the highest MCP-1 level compared with AA genotype 
and AG genotype carriers [13]. These studies indicate 
that the MCP-1 rs1024611 polymorphism may be associ-
ated with T2DM and DN risk.

In recent decades, some case‒control studies have 
investigated the relationship between the MCP-1 
rs1024611 polymorphism and the risk of DN or diabe-
tes; however, the results have been inconsistent [14–
29]. Studies are generally restricted by sample size but 
meta-analyses have greater testing power and produce 

comprehensive and reliable conclusions. Although sev-
eral meta-analyses have reported an association between 
the MCP-1 rs1024611 polymorphism and DN or diabe-
tes risk [30–32], the results were inconsistent; this may 
have several causes. First, when exploring the correla-
tion between the MCP-1 rs1024611 polymorphism and 
DN risk, selection of the control group was often not 
uniform, including patients with diabetes and healthy 
individuals [31, 32]. Second, in different meta-analyses, 
inclusion for diabetes differed. For example, Zhang et al. 
included T1DM and T2DM, while others only included 
T2DM [30]. Another recent meta-analysis was con-
ducted with a limited number of studies [24]. There-
fore, we conducted a comprehensive meta-analysis of all 
available case‒control studies, aiming to provide reliable 
evidence for the associations between the rs1024611 pol-
ymorphism and DN or T2DM risk using three models: 
(1) T2DM vs. healthy control; (2) DN vs. healthy control; 
and (3) DN vs. T2DM.

Material and methods
Literature search strategy
This meta-analysis followed the PRISMA guidelines for 
systematic reviews [33]. Searches were performed using 
the PubMed, Web of Science, EMBASE, Cochrane, and 
the China National Knowledge Infrastructure (CNKI) 
databases up to May 2023, including articles in Eng-
lish and Chinese. The following search terms were used: 
(‘diabetes mellitus’ or ‘DM’ or ‘nephropathy’ or ‘DN’ or 
‘diabetes’) and (‘MCP-1’ or ‘rs1024611’ or ‘monocyte che-
moattractant protein-1’ or ‘CCL2’) and (‘polymorphism’ 
or ‘genotype’ or ‘mutation’). The comprehensive search 
strategies for different databases are listed in Table S1. 
A manual search was conducted for the relevant refer-
ences cited in these articles, and if more information was 
needed, we contacted the corresponding authors. When 
the same population was included in multiple publica-
tions, only the latest or complete study was included.

Inclusion and exclusion criteria
Studies meeting all the following criteria were included: 
(1) observational studies (cohort, case–control, and 
cross–sectional); (2) at least two comparison groups 
(T2DM group vs. DN or healthy control group); (3) the 
distribution of the genotypes in control group and T2DM 
group (when we compared T2DM group with DN group) 
was in Hardy–Weinberg equilibrium (HWE); and (4) 
providing the genotype distribution frequency of the DN 
and control groups (or T2DM or healthy control groups), 
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or the possibility of calculating this using the literature. 
Exclusion criteria included: (1) duplicate publications 
and (2) reviews, case reports, and meta-analyses.

The PECO format was used [33], as follows: (P) patients 
with T2DM or DN; (E) distribution of the allelic variants 
of the SNP at MCP-1 rs1024611; (C) control groups; and 
(O) risk of developing T2DM or DN, as measured by OR.

Data extraction and quality evaluation
Data extraction was performed independently by two 
researchers based on the inclusion and exclusion criteria. 
If any information was missing from the selected articles, 
we contacted the corresponding authors. The extracted 
information included the first author, year of publication, 
study design, country and ethnicity of subjects, HWE in 
the control group, and the number of genotypes in the 
case and control groups. The studies included in the anal-
ysis were scored according to the standard Newcastle–
Ottawa Scale (NOS) [34]. Studies with a score ≥ 7 were 
considered high-quality.

Statistical analysis
Stata version 12.0 software was used for all statisti-
cal analyses. A chi-square test was used to examine 
whether the distribution of genotypes among the con-
trol and T2DM groups (compared to the T2DM and DN 
groups) within each study was in HWE. The odds ratios 
(ORs) and 95% confidence intervals (CIs) were used to 
calculate the summary effect size and assess the asso-
ciation between the MCP-1 rs1024611 polymorphism 
and T2DM or DN susceptibility. Pooled ORs were cal-
culated using the Z test for the dominant (GG + GA vs. 
AA), recessive (GG vs. GA + AA ), allele contrast (G vs. 
A), homozygote (GG vs. AA), and heterozygote models 
(GG vs. GA). P < 0.05 was considered statistically sig-
nificant. Subgroup analyses and meta-regression for the 
study population, genotyping method, comorbid chronic 
disease, and age- and sex-adjustment were performed to 
identify possible sources of heterogeneity.

Cochran’s (Q) and I2 tests were used to evaluate statis-
tical heterogeneity [35]. The random-effects (RE) model 
(if PQ < 0.10 or I2 > 50%) was used to calculate the OR and 
95% CIs; otherwise, the fixed-effects (FE) model was used 
to calculate combined effect estimates [36]. A sensitivity 
analysis was conducted to describe the robustness of our 
findings. Possible publication bias was tested using fun-
nel plots and Egger’s test.

Results
Study characteristics
A total of 462 studies were obtained through systematic 
searches. After reading the title, abstract and full text, 
446 articles were excluded and the remaining 16 articles 

were included in the meta-analysis [14–29]. A flow chart 
of the study selection process is shown in Fig. 1. Thirteen 
studies were based on Asian populations (three studies in 
Korea, nine studies in China, and one study in India) [14, 
15, 17–19, 21–24, 26–29]; another three studies involved 
Caucasian populations (one in Turkey, one in Germany, 
and one in Poland) [16, 20, 25]. Ten studies explored the 
association between the MCP-1 rs1024611 polymor-
phism and DN risk. Data extracted from the selected 
studies are summarized in Table 1 and Table S2.

Association between the MCP‑1 rs1024611 polymorphism 
and T2DM risk
Thirteen studies with 2,363 patients with T2DM and 
4,650 healthy controls were eligible and used to estimate 
the relationship between the MCP-1 rs1024611 polymor-
phism and T2DM. Significant heterogeneity was detected 
among the overall population in five genetic models 
(Table 2). There was no significant difference between the 
MCP-1 rs1024611 polymorphism and T2DM under the 
RE model (Table 2).

Ethnicity subgroup analyses were carried out in the 
Asian and Caucasian populations. The GG + GA geno-
type was associated with a lower risk of T2DM in Cauca-
sians under the FE model (OR = 0.79, 95% CI: 0.66–0.93, 
P = 0.006) and RE model (OR = 0.79, 95% CI: 0.66–0.93, 
P = 0.006), without significant heterogeneity (PQ = 0.372, 
I2 = 0.0%) (Fig.  2A; Table  2). The G allele was associ-
ated with a lower risk of T2DM in Caucasians under 
the FE model (OR = 0.84, 95% CI: 0.74–0.97, P = 0.016), 
but no significant risk was found under the RE model 
(OR = 0.73, 95% CI: 0.45–1.19, P = 0.202), with significant 
heterogeneity (PQ =0.097, I2 = 63.6%). Significant associa-
tions with T2DM were found for the heterozygote model 
in Asians under the FE model (GG vs. GA: OR = 0.78, 
95% CI: 0.66–0.92, P = 0.003), but no significant risk was 
found under the RE model (OR = 0.84, 95% CI: 0.67–1.07, 
P = 0.154), with heterogeneity (PQ = 0.071, I2 = 41.7%) 
(Table  2). Associations with T2DM were also observed 
under the dominant model (GG + GA vs. AA: OR = 0.83, 
95% CI: 0.72–0.95, P = 0.008) in studies without sex- or 
age-adjustment compared to studies with adjustment 
(Figure S1, Table S3). In contrast, no significant risks 
were found for the other four genetic models account-
ing for study population, genotyping method, comorbid 
chronic disease, and age- and sex-adjustment (Table  2, 
Table S3).

Meta-regression revealed that the study population, 
genotyping method, comorbid chronic disease, and age 
and sex adjustment were not the causes of heterogeneity 
in the five genetic models. A forest plot of the dominant 
model (GG + GA vs. AA) is presented in Fig. 2A and Fig-
ure S1.
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Association between the MCP‑1 rs1024611 polymorphism 
and DN risk
Seven studies, five involving Asian populations and two 
involving Caucasian populations, were used to assess the 
potential correlations between the MCP-1 rs1024611 
polymorphism and DN risk. The GG + GA genotype 
was associated with DN risk in the overall population 
(OR = 1.27, 95% CI: 1.07–1.51, P = 0.007) under the FE 
model (Table  3). Significant heterogeneity was detected 
in the overall population in other four genetic models 
(Table  3). Furthermore, no significant risks were found 
in the overall population under the RE model in the four 
genetic models (Table 3).

Ethnicity-stratified analysis indicated that the GG + GA 
genotype was associated with DN risk in the Asian popu-
lation under the FE model (OR = 1.37, 95% CI: 1.11–1.71, 
P = 0.004) ,without significant heterogeneity (PQ = 0.222, 
I2 = 30.0%). No significant risks were found in the Cauca-
sian population for any genetic model under either the 
FE or RE models (Fig. 2B; Table 3). Three genetic mod-
els showed that the rs1024611 polymorphism was corre-
lated with DN when applying the amplification refractory 
mutation detection system-polymerase chain reaction 

(ARMS-PCR) method (GG vs. GA + AA: OR = 1.92, 
95% CI: 1.31–2.81, P = 0.001, I2 = 19.4%; GG vs. AA: 
OR = 2.70, 95% CI: 1.13–6.43, P = 0.025, I2 = 64.3%; GG 
vs. GA: OR = 1.62, 95% CI: 1.08–2.43, P = 0.019, I2 = 0.0%) 
(Table 3, Figure S2). Associations were also observed for 
the dominant model in patients with DN in sex- and age-
adjusted studies (GG + GA vs. AA: OR = 1.34, 95% CI: 
1.04–1.72, P = 0.024, I2 = 0.0%) and in patients with DN 
with no comorbid chronic diseases (GG + GA vs. AA: 
OR = 1.30, 95% CI: 1.05–1.59, P = 0.014, I2 = 43.9%) (Table 
S4, Figure S2). Meta-regression revealed that the study 
population, genotyping method, comorbid chronic dis-
ease, and age- and sex-adjustments were not the causes 
of heterogeneity in the five genetic models. A forest plot 
of the dominant model is presented in Fig. 2B and Figure 
S2.

We compared the DN and T2DM groups, including 
eight studies (seven involving Asian populations and one 
involving Caucasian populations) with 1,074 patients 
with DN and 1,361 patients with T2DM. Significant het-
erogeneity was detected in the overall and Asian popula-
tions under five genetic models (Table 4). No significant 
risks were found in the Asian or Caucasian populations 

Fig. 1 Flow chart illustrating the trial structure. Abbreviations: CNKI, China National Knowledge Infrastructure; T2DM, type 2 diabetes mellitus; DN, 
diabetic nephropathy; HWE, Hardy–Weinberg equilibrium
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for any genetic models under the RE model (Table  4; 
Fig. 2C). Five genetic models showed that the rs1024611 
polymorphism was correlated with DN compared to 
T2DM when applying the ARMS-PCR method (GG 
vs. GA + AA: OR = 1.49, 95% CI: 1.14–1.95, P = 0.004, 
I2 = 43.7%; GG + GA vs. AA: OR = 2.10, 95% CI: 1.38–
3.19, P < 0.001, I2 = 0.0%; GG vs. AA: OR = 2.52, 95% 
CI:1.59–3.97, P < 0.001, I2 = 0.0%; GG vs. GA: OR = 1.80, 
95% CI:1.16–2.79, P = 0.009, I2 = 0.0%; G vs. A: OR = 1.58, 
95% CI:1.08–2.32, P = 0.020, I2 = 51.4%) (Table  4, Figure 
S3). 

Meta-regression revealed that genotyping method was 
a major driver of heterogeneity in five genetic models 
(GG + GA vs. AA: P = 0.032; GG vs. GA + AA: P = 0.028; 
GG vs. AA: P = 0.035; GG vs. GA: P = 0.041; G vs. A: 
P = 0.041), and there was a significant reduction in heter-
ogeneity in the subgroup analysis for genotyping method.

Sensitivity analysis
We performed sensitivity analysis using the leave-one-
out method. No single study changed the summarized 

ORs for all of the genetic models, indicating that our 
findings are reliable (Figures S4-S6). 

Publication bias
A funnel plot showed no significant asymmetry under 
the dominant model (GG + AG vs. AA) (Fig.  3). P val-
ues obtained from Egger’s test are shown in Tables  2, 3 
and 4, indicating that there was no publication bias in 
the four genetic models (T2DM vs. control: GG + GA 
vs. AA: P = 0.110; GG vs. GA + AA: P = 0.332; GG vs. 
AA: P = 0.273; GG vs. GA: P = 0.410; G vs. A: P = 0.293. 
DN vs. control: GG + GA vs. AA: P = 0.770; GG vs. 
GA + AA: P = 0.934; GG vs. AA: P = 0.984; GG vs. GA: 
P = 0.821; G vs. A: P = 0.892. DN vs. T2DM: GG + GA vs. 
AA: P = 0.572; GG vs. GA + AA: P = 0.875; GG vs. AA: 
P = 0.646; GG vs. GA: P = 0.975; G vs. A: P = 0.660). 

Discussion
Identification of the possible genetic origin of T2DM and 
DN could provide a theoretical basis for the early diag-
nosis or intervention of T2DM and DN. In this pooled 
analysis, we found that the GG + GA genotype was 

Table 1 Characteristics of studies that provided genotype frequencies evaluating the effects of MCP‑1 rs1024611 polymorphism on 
DN and T2DM risk

Abbreviations: T2DM Type 2 diabetes mellitus, DN Diabetic nephropathy, HWE Hardy–Weinberg equilibrium, NOS Newcastle–Ottawa scale

- Not available

* Total number of AG + GG
a  Total participants in the T2DM, DN, and control groups, respectively
b  Number of AA, AG, and GG genotypes in the T2DM group
c  Number of AA, AG, and GG genotypes in the DN group
d Number of AA, AG, and GG genotypes in the control group

No First author, year Country Ethnicity Sample  sizea T2DMb DNc Controld HWE(T2DM/ 
Control)

NOS score

1 Simeoni, 2004 [25] Germany Caucasians 632/‑/2568 363/222/47 ‑ 1335/1043/190 ‑/0.482 8

2 Joo, 2007 [19] Korea Asians 169/164/‑ 23/78/68 26/73/65 ‑ 0.933/‑ 7

3 Moon, 2007 [23] Korea Asians 112/112/230 11/50/51 16/61/35 41/102/87 0.804/0.249 8

4 Chen, 2007 [15] China (Hunan) Asians 86/94/102 24/40/22 24/44/26 31/47/24 0.521/0.454 6

5 Karadeniz, 2010 
[20]

Turkey Caucasians 43/43/105 26/17/0 24/19/0 49/44/12 0.332/0.659 7

6 Wu, 2011 [28] China (Tianjin) Asians 56/56/50 5/25/26 13/25/18 9/22/19 0.771/0.556 7

7 Jing, 2011 [18] China (Jiangsu) Asians 416/‑/416 50/274/92 ‑ 67/212/137 ‑/0.318 8

8 Jeoh, 2013 [17] Korea Asians 399/191/‑ 50/349* 28/163* ‑ ‑ 7

9 Grzegorzewska, 
2014 [16]

Poland Caucasians ‑/222/437 ‑ 104/97/21 225/177/35 ‑/0.982 8

10 Raina, 2021 [24] India Asians 444/354/515 210/204/30 138/171/45 238/236/41 0.069/0.095 8

11 Xu, 2015 [29] China (Hubei) Asians 50/‑/50 16/20/14 ‑ 18/19/13 ‑/0.100 7

12 Ma, 2016 [22] China (Zhejiang) Asians 208/‑/209 66/102/40 ‑ 46/93/70 ‑/0.156 8

13 Ma, 2017 [21] China (Gansu) Asians 30/‑/69 7/13/10 ‑ 13/36/20 ‑/0.652 7

14 Su, 2018 [26] China (Hebei) Asians 135/‑/149 18/62/55 ‑ 26/66/57 ‑/0.688 8

15 Wang, 2019 [27] China (Jiangsu) Asians 52/60/78 18/22/12 10/25/25 30/32/16 0.304/0.179 7

16 Cheng, 2019 [14] China (Zhejiang) Asians 99/‑/109 21/51/27 ‑ 16/54/39 ‑/0.699 7
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Table 2 Meta‑analysis of the association between the MCP‑1 rs1024611polymorphism and T2DM risk (T2DM vs. healthy control)

Abbreviations: No. Number, RE Random-effects, FE Fixed-effects, PCR–RFLP Polymerase chain reaction-restriction fragment length polymorphism, ARMS-
PCR Amplification refractory mutation detection system-polymerase chain reaction
−  Not available
*  Publication bias test (Egger’s test)

Genetic variant Study group No. studies Heterogeneity 
test

Association test (FE 
model)

Association test (RE 
model)

Publication bias

I2 P value OR (95% CI) P value OR (95% CI) P value P value*

GG + GA vs.AA (domi‑
nant)

Overall 13 46.8 0.032 0.92 (0.82–1.03) 0.134 0.98 (0.81–1.20) 0.855 0.110

Population

Asian 11 39.1 0.088 1.04 (0.89–1.21) 0.627 1.07 (0.85–1.34) 0.556

Caucasian 2 0.0 0.372 0.79 (0.66–0.93) 0.006 0.79 (0.66–0.93) 0.006

Genotyping method

PCR–RFLP 10 58.6 0.010 0.90 (0.79–1.03) 0.118 1.00 (0.77–1.23) 0.986

ARMS‑PCR 2 0.0 0.596 0.98 (0.77–1.25) 0.865 0.98 (0.77–1.25) 0.865

TaqMan‑PCR 1 ‑ ‑ 0.76 (0.27–2.16) 0.610 0.76 (0.27–2.16) 0.610

GG vs. GA + AA (reces‑
sive)

Overall 13 53.6 0.011 0.83 (0.72–0.96) 0.013 0.89 (0.71–1.12) 0.321 0.332

Population

Asian 11 54.8 0.015 0.82 (0.70–0.95) 0.011 0.89 (0.69–1.15) 0.377

Caucasian 2 66.0 0.086 0.92 (0.66–1.27) 0.611 0.44 (0.04–4.50) 0.490

Genotyping method

PCR–RFLP 10 63.4 0.003 0.82 (0.70–0.95) 0.010 0.87 (0.65–1.15) 0.326

ARMS‑PCR 2 0.0 0.512 0.91 (0.60–1.39) 0.656 0.91 (0.60–1.39) 0.660

TaqMan‑PCR 1 ‑ ‑ 1.23 (0.49–3.07) 0.666 1.23 (0.49–3.07) 0.666

GG vs.AA (homozygote 
model)

Overall 13 50.0 0.02 0.89 (0.75–1.06) 0.204 0.94 (0.71–1.25) 0.689 0.273

Population

Asian 11 52.6 0.02 0.92 (0.75–1.13) 0.420 0.98 (0.71–1.36) 0.925

Caucasian 2 66.5 0.084 0.83 (0.59–1.16) 0.277 0.39 (0.04–4.14) 0.436

Genotyping method

PCR–RFLP 10 61.6 0.005 0.89 (0.73–1.08) 0.232 0.95 (0.66–1.37) 0.784

ARMS‑PCR 2 0.0 0.455 0.91 (0.58–1.42) 0.669 0.91 (0.58–1.42) 0.672

TaqMan‑PCR 1 ‑ ‑ 0.93 (0.28–3.06) 0.903 0.93 (0.28–3.06) 0.903

GG vs.GA (heterozy‑
gote model)

Overall 13 48.6 0.025 0.82 (0.71–0.96) 0.011 0.87 (0.69–1.10) 0.251 0.410

Population

Asian 11 41.7 0.071 0.78 (0.66–0.92) 0.003 0.84 (0.67–1.07) 0.154

Caucasian 2 64.3 0.094 1.06 (0.75–1.50) 0.731 0.52 (0.05–5.11) 0.579

Genotyping method

PCR–RFLP 10 58.9 0.009 0.80 (0.68–0.94) 0.008 0.85 (0.51–1.41) 0.249

ARMS‑PCR 2 0.0 0.637 0.90 (0.58–1.40) 0.632 0.90 (0.58–1.40) 0.634

TaqMan‑PCR 1 ‑ ‑ 1.38 (0.51–3.72) 0.519 1.38 (0.51–3.72) 0.519

G vs. A (allele contrast 
model)

Overall 13 53.5 0.011 0.91 (0.84–0.98) 0.014 0.93 (0.82–1.06) 0.296 0.293

Population

Asian 11 53.8 0.017 0.94 (0.85–1.03) 0.189 0.97 (0.83–1.14) 0.726

Caucasian 2 63.6 0.097 0.84 (0.74–0.97) 0.016 0.73 (0.45–1.19) 0.202

Genotyping method

PCR–RFLP 10 63.4 0.003 0.89 (0.78–1.15) 0.009 0.92 (0.78–1.09) 0.32

ARMS‑PCR 2 0.0 0.500 0.97 (0.81–1.16) 0.748 0.97 (0.81–1.16) 0.749

TaqMan‑PCR 1 ‑ ‑ 1.00 (0.54–1.83) 0.992 1.00 (0.54–1.83) 0.992
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Fig. 2 Forest plot for the association between the MCP‑1 rs1024611 polymorphism and T2DM or DN risk with the dominant model (GG + GA vs. 
AA). A T2DM vs. healthy control; B DN vs. healthy control; C DN vs. T2DM
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associated with a lower risk of T2DM in Caucasians, and 
that the GG + GA genotype was associated with DN risk 
in Asians. Subgroup analyses were conducted according 
to population, genotyping method, comorbid chronic 
disease, and age- and sex-adjustment. We conducted a 
detailed and comprehensive analysis under five genetic 
models and three comparative groups. No evidence of 
publication bias was observed under all genetic models. 
In addition, we adopted a sensitivity analysis, which did 
not affect the results of nonsensitivity analysis, indicating 
that our findings are trustworthy.

To the best of our knowledge, several meta-analy-
ses have reported an association between the MCP-1 
rs1024611 polymorphism and DN or T2DM risk [30–32]. 
For example, a 2011 report was the first to investigate 
this and indicated that the MCP-1 rs1024611 polymor-
phism was associated with a decreased risk of diabetes in 
Caucasians but not in Asians [30]; however, both T1DM 
and T2DM were included and data were not stratified by 
diabetic type. A 2015 meta-analysis found no association 
between the MCP-1 rs1024611 polymorphism and DN 
susceptibility [31];  however, the control group included 

patients with T2DM and healthy controls, which may 
influence the results obtained. Additionally, a 2014 meta-
analysis comparing DN and T2DM indicated that the GA 
genotype might be a risk factor for the onset of nephrop-
athy in T2DM among Asians [32]. Based on the above 
results, the role of the MCP-1 rs1024611 polymorphism 
in T2DM and DN susceptibility has been summarized 
and analyzed in the above meta-analyses with contradic-
tory results. Different types of diabetes have heterogene-
ous pathophysiology [37, 38]. Differences in the selection 
of cases and controls could explain the observed contra-
dictory results. In the present study, stringency in select-
ing the control group was maintained, and three groups 
were compared (T2DM cases and controls; DN cases and 
controls; T2DM cases and patients with DN). A recent 
study by Raina et al. (2021) comprising 350 T2DM cases 
(145 with end-stage renal disease and 205 without end-
stage renal disease) and 221 controls in the Indian pop-
ulation have shown an association of the GG genotype 
and G allele with end-stage renal disease in T2DM cases 
[24]. An earlier study by Wang et  al. (2019) in the Chi-
nese population also associated carriage of the G-allele 

Fig. 2 continued
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with DN [27]. However, the above published reviews 
did not include these two studies. Comprehensive evi-
dence of the relationship between the MCP-1 rs1024611 
polymorphism and T2DM and DN risk remains insuffi-
cient. A total of 16 studies were selected for the present 
meta-analysis. To the best of our knowledge, this study is 
one of the first to conduct a meta-analysis with the larg-
est sample size. The comprehensiveness of the included 

articles is important for meta-analyses to draw more reli-
able conclusions.

Our meta-analysis was based on thirteen studies 
with 2,363 patients with T2DM and 4,650 healthy con-
trols evaluating the association between the MCP-1 
rs1024611 polymorphism and T2DM risk. Ethnic-
ity-stratified analysis indicated that the GG + GA 
genotype might be a protective factor against T2DM 

Table 3 Meta‑analysis of the association between the MCP‑1 rs1024611polymorphism and DN risk (DN vs. healthy control)

Abbreviations: No. Number, RE Random-effects, FE Fixed-effects, PCR–RFLP Polymerase chain reaction-restriction fragment length polymorphism, ARMS-PCR 
Amplification refractory mutation detection system-polymerase chain reaction
*  Publication bias test (Egger’s test)

Genetic variant Study group No. studies Heterogeneity 
test

Association test (FE 
model)

Association test (RE 
model)

Publication bias

I2 P value OR (95% CI) P value OR (95% CI) P value P value*

GG + GA vs.AA (domi‑
nant)

Overall 7 33.5 0.172 1.27 (1.07–1.51) 0.007 1.25 (0.98–1.60) 0.072 0.770

Population

Asian 5 30.0 0.222 1.37 (1.11–1.71) 0.004 1.38 (1.01–1.88) 0.041

Caucasian 2 47.7 0.167 1.09 (0.82–1.47) 0.545 1.00 (0.60–1.67) 0.986

Genotyping method

PCR–RFLP 5 0.0 0.539 1.12 (0.88–1.42) 0.354 1.12 (0.88–1.42) 0.355

ARMS‑PCR 2 72.8 0.055 1.48 (1.14–1.91) 0.003 1.87 (0.83–4.19) 0.128

GG vs. GA + AA (reces‑
sive)

Overall 7 60.6 0.019 1.17 (0.93–1.47) 0.178 1.19 (0.79–1.78) 0.400 0.934

Population

Asian 5 66.1 0.019 1.24 (0.96–1.59) 0.100 1.26 (0.80–2.00) 0.324

Caucasian 2 71.5 0.061 0.92 (0.54–1.56) 0.752 0.45 (0.79–1.78) 0.556

Genotyping method

PCR–RFLP 5 25.1 0.254 0.88 (0.66–1.18) 0.407 0.92 (0.65–1.32) 0.669

ARMS‑PCR 2 19.4 0.265 1.92 (1.31–2.81) 0.001 1.96 (1.25–3.07) 0.003

GG vs.AA (homozygote 
model)

Overall 7 57.8 0.027 1.42 (1.09–1.86) 0.010 1.40 (0.88–2.23) 0.160 0.984

Population

Asian 5 58.8 0.046 1.61 (1.18–2.19) 0.003 1.55 (0.92–2.63) 0.099

Caucasian 2 73.9 0.050 0.97 (0.56–1.68) 0.907 0.45 (0.03–7.30) 0.576

Genotyping method

PCR–RFLP 5 19.3 0.291 1.02 (0.72–1.45) 0.918 1.07 (0.70–1.63) 0.763

ARMS‑PCR 2 64.3 0.094 2.28 (1.50–3.47)  < 0.001 2.70 (1.13–6.43) 0.025

GG vs.GA (heterozy‑
gote model)

Overall 7 44.8 0.093 1.06 (0.83–1.50) 0.652 1.08 (0.76–1.54) 0.676 0.821

Population

Asian 5 49.5 0.094 1.11 (0.85–1.45) 0.445 1.13 (0.75–1.68) 0.564

Caucasian 2 66.4 0.085 0.86 (0.49–1.50) 0.594 0.46 (0.04–5.16) 0.532

Genotyping method

PCR–RFLP 5 14.1 0.324 0.83 (0.61–1.13) 0.229 0.87 (0.61–1.22) 0.414

ARMS‑PCR 2 0.0 0.563 1.62 (1.08–2.43) 0.019 1.62 (1.08–2.43) 0.019

G vs. A (allele contrast 
model)

Overall 7 67.2 0.006 1.17 (1.04–1.33) 0.010 1.13 (0.89–1.43) 0.304 0.892

Population

Asian 5 68.3 0.013 1.23 (1.07–1.42) 0.004 1.23 (0.92–1.64) 0.166

Caucasian 2 76.5 0.039 1.04 (0.83–1.33) 0.754 0.87 (0.46–1.67) 0.684

Genotyping method

PCR–RFLP 5 32.8 0.203 1.01 (0.86–1.19) 0.877 0.98 (0.80–1.21) 0.886

ARMS‑PCR 2 80.2 0.025 1.43 (1.19–1.72)  < 0.001 1.70 (0.94–3.05) 0.078
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susceptibility in Caucasians but not in Asians, which 
agrees with a previous meta-analysis [30]. The results 
of the of subgroup analysis (DN vs. healthy controls) 
differed from those of a previous meta-analysis [31]; 

we found that the GG + GA genotype was associated 
with DN risk in Asians, indicating that the MCP-1 
rs1024611 G allele represents increased DN risk. 
This discrepancy might be due to increased research 

Table 4 Meta‑analysis of the association between the MCP‑1 rs1024611polymorphism and DN risk (DN vs. T2DM)

Abbreviations: No. Number, RE Random-effects, FE Fixed-effects, PCR–RFLP Polymerase chain reaction-restriction fragment length polymorphism, ARMS-PCR 
Amplification refractory mutation detection system-polymerase chain reaction

− Not available

* Publication bias test (Egger’s test)
a  OR (95% CI) in two articles could not be calculated (Jeoh et al., 2013 and Karadeniz et al., 2010 [20])
b  OR (95% CI) in one article could not be calculated (Jeoh et al., 2013)

Genetic variant Study group No. of studies Heterogeneity 
test

Association test (FE 
model)

Association test (RE 
model)

Publication bias

I2 P value OR (95% CI) P value OR (95% CI) P value P value*

GG + GA vs.AA 
(dominant)

Overall 8 52.7 0.039 1.13 (0.93–1.37) 0.227 1.03 (0.74–1.42) 0.881 0.572

Population

Asian 7 59.4 0.022 1.12 (0.92–1.37) 0.254 1.00 (0.69–1.44) 0.996

Caucasian 1 - - 1.21 (0.51–2.86) 0.662 1.21 (0.51–2.86) 0.662

Genotyping 
method

PCR–RFLP 6 0.0 0.458 0.83 (0.63–1.10) 0.197 0.84 (0.63–1.11) 0.220

ARMS‑PCR 2 43.7 0.182 1.49 (1.14–1.95) 0.004 1.67 (0.96–2.90) 0.069

GG vs. GA + AA 
(recessive)a

Overall 6 73.9 0.002 1.08 (0.86–1.35) 0.532 1.07 (0.66–1.72) 0.786 0.875

Population

Asian 6 73.9 0.002 1.08 (0.86–1.35) 0.532 1.07 (0.66–1.72) 0.786

Genotyping 
method

PCR–RFLP 4 34.7 0.204 0.79 (0.60–1.04) 0.098 0.78 (0.54–1.11) 0.167

ARMS‑PCR 2 0.0 0.728 2.10 (1.38–3.19)  < 0.001 2.10 (1.38–3.19) 0.001

GG vs.AA (homozy‑
gote model)a

Overall 6 77.5  < 0.001 1.24 (0.92–1.66) 0.161 1.06 (0.54–2.10) 0.867 0.646

Population

Asian 6 77.5  < 0.001 1.24 (0.92–1.66) 0.161 1.06 (0.54–2.10) 0.867

Genotyping 
method

PCR–RFLP 4 42.8 0.155 0.70 (0.47–1.05) 0.087 0.67 (0.38–1.17) 0.158

ARMS‑PCR 2 0.0 0.399 2.52 (1.59–3.97)  < 0.001 2.51 (1.59–3.97)  < 0.001

GG vs.GA (heterozy‑
gote model)a

Overall 6 56.1 0.044 1.06 (0.83–1.36) 0.631 1.05 (0.71–1.55) 0.802 0.975

Population

Asian 6 56.1 0.044 1.06 (0.83–1.36) 0.631 1.05 (0.71–1.55) 0.802

Genotyping 
method

PCR–RFLP 4 7.5 0.355 0.83 (0.62–1.12) 0.218 0.83 (0.60–1.13) 0.236

ARMS‑PCR 2 0.0 0.963 1.80 (1.16–2.79) 0.009 1.80 (1.16–2.79) 0.009

G vs. A (allele con‑
trast model)b

Overall 7 74.9 0.001 1.10 (0.96–1.26) 0.159 1.03 (0.76–1.40) 0.835 0.660

Population

Asian 6 79.1  < 0.001 1.10 (0.96–1.26) 0.173 1.02 (0.73–1.42) 0.905

Caucasian 1 - ‑ 1.15 (0.55–2.40) 0.708 1.15 (0.55–2.40) 0.708

Genotyping 
method

PCR–RFLP 5 39.0 0.161 0.85 (0.70–1.02) 0.086 0.84 (0.65–1.08) 0.179

ARMS‑PCR 2 51.4 0.152 1.46 (1.20–1.77)  < 0.001 1.58 (1.08–2.32) 0.020
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focusing on Asians. Only three of 16 studies involved 
Caucasians, suggesting that future studies should focus 
more on Caucasians.

Overall, our results indicate that the MCP-1 rs1024611 
polymorphism has varying effects on T2DM and DN 
susceptibility in different ethnic groups. T2DM and DN 
are multietiology diseases that are genetically heteroge-
neous among different populations [39, 40]. Research 
from different countries shows that the frequency of the 
G allele for MCP-1 rs1024611 was 25.0% in Caucasians 
[25], 55.0% in Chinese people [18], and 61.9% in Kore-
ans [23]. This phenomenon might also be explained by 
clinical heterogeneity. Differences in original research 
parameters (gender, age, disease severity, different stages 
of nephropathy, and method of diagnosing T2DM and 
DN, etc.) may have caused variations in the results [41]. 
Several studies found that the 2518G allele for MCP-1 
rs1024611 was negatively correlated with plasma MCP-1 
levels, insulin resistance, male sex, younger participants 
(age ≤ 50), and T2DM [18, 25]. However, stratified analy-
sis of these factors has rarely been carried out.

This meta-analysis included eight studies with 1,074 
patients with DN and 1,361 patients with T2DM and no 
significant risks were found in the Asian or Caucasian 
populations for any genetic models. This suggests that 
the MCP-1 rs1024611 polymorphism does not affect DN 
progression in T2DM. Because of the small sample size, 
this correlation needs to be verified by further multieth-
nic, large-sample-size studies. Meta-regression revealed 
that genotyping method was a major driver of hetero-
geneity in five genetic models when comparing the DN 
and T2DM groups. Additionally, there was a significant 
reduction in heterogeneity in subgroup analysis for geno-
typing method. However, study population, genotyping 
method, comorbid chronic disease, and age- and sex-
adjustments were not causes of heterogeneity when com-
paring the DN or T2DM groups to the healthy group. 
Several factors significantly impacted heterogeneity (such 
as sex and disease stage), although the original articles 
did not provide more information on this. To the best of 
our knowledge, the present study is the first to identify 
a genotyping method as a source of heterogeneity in the 

Fig. 3 Funnel plots for the association between the MCP‑1 rs1024611 polymorphism and T2DM or DN risk with the dominant model (GG + GA vs. 
AA). A T2DM vs. healthy control; B DN vs. healthy control; C DN vs. T2DM
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relationship between the rs1024611 polymorphism and 
T2DM/DN susceptibility. To carry out a high-sensitivity 
rs1024611 SNP analysis, using ARMS-PCR is necessary.

Meta-analysis has greater statistical power than indi-
vidual studies and can produce more reliable results 
[42, 43]. We used the NOS to evaluate the quality of the 
selected literature; sensitivity analysis yielded a similar 
result. A funnel plot and Egger’s test indicated no pub-
lication bias in any genetic model. These results suggest 
that our investigation was credible and robust. How-
ever, some limitations should also be acknowledged 
when interpreting the results. First, although this study 
had strict inclusion and exclusion criteria, significant 
heterogeneity existed under some genetic models in the 
overall and subgroup populations. After stratified analy-
sis by genotyping method, there was a significant reduc-
tion in heterogeneity in subgroup analysis. Sex, age, and 
lifestyle are also related to T2DM and DN development, 
which may be sources of heterogeneity [44–46]. The 
original articles did not provide complete information 
on these confounding factors (such as age of onset, age 
matching, and sex ratio), and subgroup analysis of these 
factors was restricted. Second, most studies included 
in this meta-analysis were based on Asian populations, 
with few studies on Caucasian populations and none on 
African populations; hence, these data need to be veri-
fied in more Caucasian and African populations. Third, 
this meta-analysis only included Chinese and English 
articles, which may have led to language bias. Fourth, all 
the studies were case–control studies. A meta-analysis 
of cohort studies would give us a more valid result, and 
more cohort studies must be carried out in the future. 
Finally, the analysis of the correlation between the 
MCP-1 rs1024611 polymorphism and DN risk was based 
on small samples. Larger, well–designed case–control 
studies should be carried out in the future to elucidate 
the role of the MCP-1 rs1024611 polymorphism in DN 
susceptibility.

Conclusions
In summary, the results of our meta-analysis demonstrate 
that the MCP-1 rs1024611 polymorphism is associated 
with T2DM susceptibility in Caucasians and with DN in 
Asians. Larger, well-designed cohort studies should be 
carried out in the future to verify this association.
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