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Abstract 

Background The association involving N6-methyladenosine (m6A) modification, molecular subtype and specific 
immune cell group in tumor microenvironment has been the focus of recent studies. The underlying function of m6A 
modification in thyroid cancer (TC) remains elusive.

Methods The m6A modification regulations, molecular character and tumor immune profile of 461 TC patients were 
explored and then the correlation between them were comprehensively evaluated. The m6Ascore was established 
using principal component analysis (PCA) to quantify the m6A pattern of individual TC patients. The prognostic signifi-
cance of the m6Ascore was evaluated by multivariate Cox regression analysis.

Results Four m6Aclusters (mc1, 2, 3, 4)—characterized by differences in extent of aneuploidy, expression of immu-
nomodulatory genes, mRNA or lncRNA expression pattern and prognosis were identified. T Preliminary validation 
of m6Ascore was a potential independent prognostic factor of TC involving in mc3. Finally, the prognostic value 
of the m6Ascore and its association with copy number variation (CNV) and tumor immune microenvironment (TIME) 
of TC in mc3 were verified.

Conclusions The correlation between m6A modification, the copy number burden and tumor immune landscape 
in TC was demonstrated. A m6Acluster-mc3 with low m6Ascore and high CNV molecular subtype was identified 
with poor clinical prognosis, low infiltrating immunocyte and weak effector T cell. A three-gene clinical prognosis 
model for TC based on 4 m6a cluster expression was established. Understanding of TIME is enhanced by comprehen-
sive assessment of m6A patterns in individual TC patients and gives a new insight toward improved immunotherapy 
strategies for TC cancer patients.
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Background
N6-methyladenosine (m6A), produced by methylation 
of N6 adenosine [1], can regulate multiple RNA-related 
biological processes, such as RNA stability [2], transla-
tion [3], alternative splicing [4, 5] and nuclear export [6]. 
The m6A modification is an equilibration process regu-
lated by three class levels: writers (m6A methyltrans-
ferases consisting of 8 genes including ZC3H13, VIRMA, 
CBLL1, WTAP, RBM15/RBM15B, METTL3/14), 2 eras-
ers (m6A demethylases consisting of ALKBH5 and 
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FTO) and 14 readers (m6A-binding proteins by LRPP-
PRC, IGF2BP1/2/3, RBMX, YTHDC1/2, YTHDF1/2/3, 
HNRNPA2B1, HNRNPC, ELAVL1, FMR1) [7–9]. As 
an essential RNA modification, m6A regulated multiple 
important cellular processes, such as cellular differen-
tiation, stem cell renewal and response to DNA damage 
[10]. With a consideration of m6A’s important role, aber-
rant expression of m6A regulators is explored to be asso-
ciated with malignant cancer and the immune events 
including tumor development and tumor microenviron-
ment (TIME) [10, 11].

In the clinical treatment of thyroid cancer (TC), 
immune checkpoint inhibitor therapy (ICT, mainly PD-1/
PD-L1 monoclonal antibody therapy) is considered to be 
an important factor in tumor treatment due to its sig-
nificant anti-tumor effect and limited side effects. It has 
great promise [12, 13], but not all the TC patients show 
the effective clinical response or even primary resist-
ance to the ICT therapies [14]. In many malignant can-
cer types, a large number of tumor intrinsic, for example, 
when TIME is characterized by a high proportion of 
CD8 + T cell infiltration, an effective response to ICT 
therapy occurs [15, 16] while when CD8 + T cells When 
the cell infiltration is low, there is no response [17, 18]. 
In order to improve the efficacy and safety of immuno-
therapy, it is of great significance to explore the drivers 
of ICT clinical response in TC [19, 20]. Further research 
on the relevant molecular characteristics of clinical treat-
ment strategies for immuno-oncology therapy will also 
be of great help for treatment optimization [21, 22].

The relationship between m6A regulators and immune 
cells has lately been the subject of several investigations. 
The METTL3-mediated m6A alteration enhanced the 
stimulation of DC-based T-cell and dendritic cells (DCs) 
responses by increasing the translation of specific immune 
genes [23]. T cells’ homeostasis and differentiation were 
disturbed when METTL3 was deleted. [24] Removal of 
YTHDF1 increased the antigen-specific CD8 + T cells’ 
antitumor response and improved the effectiveness of anti-
PD-L1 treatment, according to Han et  al. [25]. However, 
because of limitations in basic experiment, the preceding 
study is restricted to a small quantity of cell types and m6A 
regulators, whereas cancer formation and progression rely 
on interaction between numerous m6A RNA methylation 
regulators [9]. As a result, a thorough examination of the 
immunological landscape regulated by a range of m6A regu-
lators would improve our overall knowledge of m6A regula-
tors’ immunomodulatory (IM) influence on the TIME. The 
gastric cancer’s m6A modification patterns were recently 
analyzed thoroughly on the basis of numerous m6A regula-
tors and systematically linked with the tumor immune land-
scape, showing that m6A modification pattern acts as a key 
part in TIME diversity in gastric cancer [26].

In this investigation, we integrated the clinical and 
molecular data of 461 TC patients to comprehensively 
evaluate the m6A modification pattern and TIME. Four 
distinct m6A modification regulation patterns were iden-
tified, and we were surprised to find that they had dis-
tinct molecular subtypes, immune characters and clinical 
prognoses, showing the key roles of m6A modification in 
the developments of individual tumor landscape in TC. 
We then quantified the m6A modification of individual 
TC patients by evaluating the gene patterns of m6A 
regulators.

Methods
Molecular and clinical data
RNA sequencing data (count and fpkm values) for gene 
expression analysis, genetic mutations (Mutect2), and 
clinical data were downloaded from the Genomic Data 
Commons (https:// portal. gdc. cancer. gov/) [27]. The 
Ensembl gene IDs of the RNA-seq data were mapped to 
gene symbols by referring to an annotation file (https:// 
www. genco degen es. Org/ human/ relea se_ 22. html). The 
copy number variation (CNV) data were downloaded 
from the xena web tool (https:// xena. ucsc. edu/) [28].

Model‑based clustering analysis for m6A regulators
Gene expression levels were quantified using the metric 
log2 (fpkm + 1), then used to identify m6A modification 
patterns based on the expression of 24 m6A regulators 
genes by model-based clustering analysis implemented in 
the R package/mclust. [29] In this package, the optimal 
number of clusters was determined based on the Bayes-
ian information criterion (BIC).

Gene set variation analysis (GSVA)
Gene set variation analysis, a non-parametric and unsu-
pervised method commonly used for estimating path-
way variations in the samples of expression datasets, 
was performed to explore the differences in biological 
processes among different m6A modification patterns 
[30]. The c2 .cp .kegg .v6.2 .symbols gene sets for GSVA 
were downloaded from the Molecular Signatures Data-
base (MSigDB). A p < 0.05 was considered statistically 
significant.

Identification of differentially expressed genes (DEG) 
among m6Aclusters
Based on published literature, RNA methylation is 
regulated by 24 genes, including 8 writers, 14 readers 
and 2 erasers were highlighted [7–9]. To identify genes 
related to m6A modification regulation, we classified TC 
patients into m6Aclusters based on the expression of 24 
m6A genes. DEGs among these clusters were determined 
using the R package ‘limma’, which was applied using the 

https://portal.gdc.cancer.gov/
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raw fpkm values of RNA sequencing data. Genes with 
adjusted p < 0.05 and at least two-fold changes in expres-
sion were identified as DEGs.

Construction of the m6A gene signature
We applied a methodology to quantify the m6A modi-
fication pattern (m6Ascore) of individual TC patients. 
The m6Ascore was established as follows. First, we 
extracted the overlapping DEGs among m6Aclus-
ters and classified the TC patients into several groups 
using model-based clustering to analyze the overlap-
ping DEGs. Univariate Cox regression analysis was per-
formed to evaluate the prognosis of each overlapping 
DEG. Genes with a significant prognosis (p < 0.05) were 
extracted for further analysis. Next, principal com-
ponent analysis (PCA) was performed to establish the 
m6A gene signature. We selected both principal compo-
nents 1 (PC1) and 2 (PC2) as signature scores. Finally, 
the m6Ascore was defined using a method similar to 
Genomic Grade Index [26, 31, 32]:

where i is the expression of overlapping genes with a sig-
nificant prognosis of DEGs among m6Aclusters.

Correlation between m6Ascore and other relevant 
biological processes
Spearman’s correlation analysis was performed to explore 
the correlation between m6Ascore and other relevant 
biological processes using the gene sets reported by 
Mariathasan et al., [18] including (1) antigen processing 
machinery (APM), (2) effector CD8 T-cell signature, (3) 
immune checkpoint, (4) nucleotide excision repair, (5) 
mismatch repair, (6) DNA replication, (7) DNA dam-
age repair, (8) epithelial-mesenchymal transition mark-
ers, (9) Wnt targets, (10) pan-fibroblast transforming 
growth factor-β response signature, and (11) angiogen-
esis signature.

Prediction of the potential chemotherapeutic agents
Genomics of Drug Sensitivity in Cancer (GDSC) is a pub-
lic dataset containing information on drug sensitivity in 
cancer cells and molecular markers of drug response. 
Using the R/oncoPredict [33] package, GDSC2 gene 
expression profile and corresponding drug response 
information were downloaded to generate a ridge regres-
sion model that can be applied to transcriptomic data. 
Then the sensitivity scores were yielded to predict the 
half-maximal inhibitory concentration (IC50) of chemo-
therapy agents (Cisplatin and Paclitaxel) in TC patients.

m6Ascore = �(PC1i + PC2i)

Tumor Immune Dysfunction and Exclusion (TIDE) 
for immune landscape evaluation
TIDE (http:// tide. dfci. harva rd. edu/, accessed on 15 
March 2022), [34] an online algorithm for predict-
ing the tumor immune dysfunction and exclusion sta-
tus, was performed based on the transcriptome data. 
The m6Ascore of each patient in TCGA-THCA cohort 
was calculated and regarded as the m6Ascore group-
ing criteria based on model-based cluster by R/mclust 
package. Notably, the difference of immune signature 
(such as CAF, IFNG, CD8 and CTL) score between the 
groups was compared using Chi-square test.

Statistical analysis
Statistical significance for 3 or more groups was esti-
mated using the Kruskal-Wallis test and association 
between categorical variables was explored using the 
χ2 test. The correlation coefficient was calculated via 
Spearman’s correlation analysis. The Kaplan-Meier 
method was used to generate survival curves and the 
log-rank test was used to determine the statistical sig-
nificance of differences. The oncoplot function of R 
package/maftools [35] was used to depict the mutation 
landscape of TCGA-THCA cohort. All tests were two 
sided, and p < 0.05 was regarded as significant. All anal-
yses were performed with R software V.4.1.0 (http:// 
www.R- proje ct. org).

Results
The 24 m6A regulators in TC: molecular characteristics 
and clinical relevance
The frequency of 24 m6A regulator changes in TC was 
investigated using somatic mutations. Only 18 of 492 
samples had m6A regulator mutations, indicating that 
a complete average mutation frequency of m6A regula-
tors was extremely low (Please see in Fig.  1a). The sur-
vival curve of the 24 m6A regulators was then examined, 
and it was shown that 16/24 m6A regulators had a sub-
stantial influence (p < 0.05) on TC patients (Please see in 
Fig. 1b). The m6A regulators’ mRNA expression levels in 
TC and surrounding tissues were also investigated, and 
it was discovered that 22 of the 24 m6A regulators were 
differently expressed (Please see in Fig. 1c). The expres-
sional differences in m6A regulators were significantly 
diverse between TC and surrounding tissues, indicating 
that m6A regulator expression imbalance plays a critical 
role in formation and progression of TC. Furthermore, 
the activity of genes is not remote, showing that there is a 
collaboration in m6A regulators in cancer [36, 37]. These 
findings suggest that m6A regulators of RNA methylation 
play critical roles in the formation of TC.

http://tide.dfci.harvard.edu/
http://www.R-project.org
http://www.R-project.org


Page 4 of 14Cai et al. BMC Endocrine Disorders          (2023) 23:271 

Fig. 1 Clinical relevance and molecular characteristics of m6A regulator genes in TC. A The mutation landscape of 24m6A regulator genes in 492 
TCs; B The overall survival of high or low expression of 24 m6A regulators in TCs; C The gene expression alterations among m6A regulators; Tumor 
(normal) was indicated in red (blue). ANOVA test: The asterisks represented the statistical p value (*p <0.05; **p <0.01;***p <0.001)
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Fig. 2 m6A modification patterns in TC and biological characteristics of m6A subtypes. A Model-based clustering of TC yields four subtypes 
in the TCGA-THCA dataset. MC1, cluster1; MC2, cluster2; MC3, cluster3; MC4, cluster4; B Comparison of prognosis among four m6A subtypes 
(Kaplan-Meier analysis); C, D 192 Over-lap DEGs and 128 Cox regression substantially DEGs enriched in KEGG pathways
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The m6A modification patterns mediated by 24 m6A 
regulators
The 24 m6A regulators’ expression was used to cat-
egorize TC patients using model-based clustering. We 
found four different RNA methylation modification pat-
terns (called m6Aclusters mc1–mc4), with 118 cases in 
m6Acluster-c1, 129 cases in m6Acluster-c2, 53 cases in 
m6Acluster-c3, and 85 cases in m6Acluster-c4 (Please 
see in Fig.  2a). Favorable factors for overall survival 
(OS) (IGF2BP2) and risk factor for OS (IGF2BP3) were 
among the m6A regulators with the largest variations 
across subtypes (YTHDC1, RBMX, METTL14 and FTO). 
IGF2BP2, CBLL1 and FMR1 expression levels were low 
in m6Acluster-mc3, whereas YTHDF1, LRPPRC and 
IGF2BP3 expression was high. As a result, it’s no surprise 
that m6Acluster-mc3 had the poor prognosis (Please see 
in Fig. 2b).

To understand the m6A alteration pattern in individual 
TC patients, we performed a relatively accurate assess-
ment using the m6Ascore approach. With the help of the 
limma program of R software, 192 DEGs associated with 
m6A isoforms can be found. On this basis, we assessed 
the prognosis of 128 genes in m6A subtype-associated 
DEGs using univariate Cox regression. Among these dif-
ferent m6A modification patterns, GO analysis allowed 
us to investigate the activity of KEGG pathway processes 
[38]. In DEGs and Cox regression substantially DEGs, 
they were notably enriched in pathways linked to thy-
roid cancer related terms, such as thyroid hormone pro-
duction, lung cancer, and autoimmune thyroid disease, 
as depicted in (Please see in Fig.  2c and d). Meanwhile, 
immune-related pathways such as the NOD-like recep-
tor signaling pathway, TGF-beta signaling route, and 
cytokine-cytokine receptor interaction were shown to be 
overrepresented among the implicated pathways.

Immune characteristics and subtype identification 
in distinct m6A modification patterns
Thorsson et colleagues [39] investigated the pan-can-
cer immune landscape and eventually found the six 
immune subtypes (C1–C6) considered for determin-
ing the immune response patterns and have conse-
quences for future immunotherapy research. In most 
TC patients, the immune subtype C3 was enriched, 

which is characterized by lower levels of overall CNVs. 
Low to moderate tumor cell growth, increased Th17, 
and aneuploidy than the other immune subtypes. Sur-
prisingly, the four unique methylation modification lev-
els showed different C3 immune subtype proportions, 
with m6Acluster-c3 having lowest (96.14%), followed 
by m6Acluster-c1 (90.68%), and c2 (57.27%) (p 0.001). 
The immunological properties of various m6A modifi-
cation patterns were next investigated in further detail. 
In comparison to the other clusters, m6Acluster-c3 had 
a high ITH, and lower levels of aneuploidy and overall 
CNVs (Please see in Fig.  3a, b and c). The aneuploidy 
score and overall CNVs were highest in m6Acluster-c2, 
as were the proliferation rate and ITH, and the mac-
rophage signature was conquered by M0 macrophages. 
Th17 was increased, tumor cell proliferation was low, 
ITH was low, and aneuploidy and overall CNVs were 
low in m6Acluster-c3.

Now that there is much consensus on the impor-
tance of IM for cancer immunotherapy, a variety of IM 
antagonists and agonists have been studied in clini-
cal oncology [40]. It was further found that relevant 
research on IM immunotherapy can only be advanced 
by understanding their expression in different patterns 
of m6A alterations. After studying the expression of IM 
genes in the m6A subtype (Please see in Fig. 3d), it was 
found that almost all function were poorly expressed 
in m6Acluster-c3 especially in immune, such as T 
function, B function, APC processing, Macrophage 
functions.

Construction of the m6A gene signature and evaluated 
the immune landscape was significantly associated 
with m6Ascore
For further exploration, an essential step is to character-
ize the functional pathways of different m6Acluster sub-
types and potential predictive biomarkers. Starting with 
differential expression analysis (DEA), the data suggested 
the discovery of subtype-specific up- or down-regulated 
biomarkers. Biomarkers for each m6Acluster subtype 
were selected from the most DEGs sorted by log2Fold.
so These biomarkers should pass the R/limma analysis 
to identify subtype-specific downregulated in Fig. 4a top 
and upregulated in 4a bottom biomarkers.

(See figure on next page.)
Fig. 3 Different responses of immune cells are enriched in the four subtypes of thyroid cancer. A Molecular subtypes in distinct m6Aclusters. 
From top to bottom: mRNA expression (median normalized expression levels); lncRNA expression (median normalized expression levels); B Barplot 
of fraction genome altered among four identified subtypes of thyroid cancer in TCGA-THCA cohort; C Comparison of TMB and TiTv among four 
identified subtypes of thyroid cancer in TCGA-THCA cohort; D Heatmap of enrichment score of gene set of interest for four identified subtypes 
in TCGA-THCA cohort; Heatmap plot showing the different immune related functions between m6A subtypes
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Fig. 3 (See legend on previous page.)
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Likewise, on the basis that GSEA was run for each sub-
type based on its corresponding DEA results, we were 
able to identify functional pathways using a gene set con-
text that included all gene sets derived from GO biologi-
cal processes (c5.bp. v7.1.symbols.gmt) Heatmap analysis 
of subtype-specific downregulated biological pathways 
(Please see in Fig. 4b left) using limma package for 4 iden-
tified subtypes in TCGA-THCA and upregulated path-
ways (Please see in Fig. 4b right). To better demonstrate 
the molecular features of the m6A gene signature, we 
analyzed the differences between m6Asore by boxplots. 
Furthermore, the student t test showed a significant dif-
ference in m6Ascore among m6Aclusters (Please see in 
Fig. 4c). It was also shown that m6Ascore was negatively 
correlated with AS (r= − 0.22, p < 0.001). (Please see in 
Fig. 4d).

The m6Ascore subtypes guided chemotherapy strategies 
and immune landscape evaluation
For further explain the other functions of the classifier 
and the stability test of the classifier well, we dig deeper 
into the classifier function and verify the repeatability 
and stability of the classifier using drug sensitive pre-
diction and immune status evaluation based on robust 
bioinformatics tools. Immunogenic cell death prompted 
by certain chemotherapy agents and subsequent tumor-
specific immune response can determine the antican-
cer treatment effect of traditional cytotoxic drugs [41] 
and can also be used to sensitize tumors to checkpoint 
blockade, so the optimal combination of chemotherapy 
and immunotherapy warrants further exploration. Based 
on the 24 m6A gene sets, we generated m6Ascore, from 
which we could hypothesize that chemotherapy status 
might correlate with m6Ascore levels. Significance was 
found after comparing the estimated cis and pax sen-
sitivities between the two subtypes. The OncoPredict 
package was used to predict the drug sensitivity score of 
m6Ascore-mc1234 group, and the sensitivity score was 
positively correlated with the IC50 values of cisplatin and 
paclitaxel. Our analysis revealed that IC50 were lower in 
patients who underwent Cisplatin chemotherapy (Please 
see in Fig. 5a left) and higher when Paclitaxel (Please see 
in Fig. 5a right).

The exploring expression of diverse m6A altera-
tion patterns is required to progress this study. The 

functions based on the expression of IM regulators in 
the m6Acluster-c3 with three m6Acluster-c124 sub-
types were investigated (Please see in Fig. 5b). CD8 + T 
cell effecter genes such as CD8A, GZMA, IFNG, 
CXCL9, CXCL10 and TBX21 were significantly down-
regulated (p < 0.05) in the m6Acluster-c3 group, sug-
gesting the decrease efficiency for T cells to recognize 
antigens and the inflammation and antitumor immu-
nity. CD8 + T cell effecter genes was a novel biomarker 
with high sensitivity in predicting immunotherapy effi-
cacy, and we identified its positive correlation with in 
the m6Acluster-c3. The activation of inhibitory check-
point molecules prevents cancer cells from damage 
and attack so they can serve as promising targets for 
cancer immunotherapy. We investigated the immune 
checkpoint genes expression in THCA specimens and 
uncovered that CD274 (PD-L1), PDCD1, PDCD1LG2, 
CTLA4, HAVCR2, LAG3 and TIGIT were significantly 
low-expressed (p < 0.05) in the m6Acluster-c3 group 
(Please see in Fig. 5c). The immune suppression signa-
ture score of THCA specimens were calculated using 
the ESTIMATE package. The m6Acluster-c3 corre-
lated with down signature scores (Please see in Fig. 5d), 
indicating the low levels of stromal and immune cells 
in the iTME. Tumors with m6Acluster-c3 correlated 
with elevated levels of multiple immune infiltration. 
In a nutshell, the complicated iTME of THCA was 
characterized by the mixture of tumor and antitumor 
cells, as well as the coexistence of immune activation 
and suppression. For further explore the relationship 
between m6Ascore and immune status, TIDE analy-
sis was performed to predict the immune landscape in 
m6Acluster mc124 and mc3 groups. We calculated the 
tumor-intrinsic signature (CAF, IFNG, CD8 and CTL) 
scores of the TC patients and the analysis indicated that 
m6Ascore-related signatures were remarkably down-
regulated in (Please see in Fig. 5e).

Establishing a clinical prognosis model for thyroid cancer 
based on 4 m6a cluster expression
Based on the expression patterns of 4 m6a clusters, we 
further established a clinical prognosis model for thy-
roid cancer. In our analysis of the TCGA cohort, repre-
sented in Fig. 6a, which encompasses 509 tumor and 58 

Fig. 4 The immune landscape in distinct m6A modification patterns. A Heatmap of subtype-specific upregulated and downregulated biomarkers 
using limma for 4 identified subtypes in TCGA-THCA cohort; B GSVA of subtype-specific upregulated pathways (left). GSVA of subtype-specific 
downregulated pathways in TCGA-THCA cohort (right); C Boxplot showing the different m6aScore between m6A subtypes. ANOVA test: The 
asterisks represented the statistical p value (*p <0.05; **p <0.01; ***p <0.001); D Scatterplot with marginal distributions overlaid on the axes 
and results from statistical tests in the subtitle for m6ascore and cnv aneuploid score

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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normal tissues with 24 m6a genes, differential expression 
analysis based on 4 clusters identified 11 significantly dif-
ferentially expressed genes (|logFC|>0.5, p value < 0.05). 
Univariate Cox regression analysis, depicted in Fig.  6b, 

pinpointed 8 genes significantly correlated with overall 
survival. Subsequent application of Lasso Cox regression 
analysis, as illustrated in Fig. 6c and d, yielded a refined 
3-genes prognostic model. The univariate analysis further 

Fig. 5 The m6Ascore subtypes guided chemotherapy strategies and immune landscape evaluation. A Boxviolins for estimated IC50 of Cisplatin 
and Paclitaxel among 4 identified m6Ascore subtypes in TCGA-THCA cohort. *p <0.05; **p <0.01; ****p <0.0001; B The RNA expression of eight 
CD8+ T cell effector genes in m6Ascore-mc3 and mc124 groups; C The immune checkpoint gene expression levels in m6Ascore-mc3 and mc124 
groups; D The signature fibroblast, Treg and T cells regulatory score of immune suppression in m6Ascore-mc3 and mc124 groups; E The difference 
of the tumor immune dysfunction and exclusion score between the m6Ascore-mc3 and mc124 groups
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Fig. 6 Analytical flow and results of the gene expression study in the TCGA cohort. A Flowchart of data processing and analysis; B Univariate analysis 
showcasing genes with their Hazard Ratios and p-values; C Lasso regression analysis; D Coefficient profiles of genes over Log(λ); E Risk score distribution, survival 
status, and gene expression heatmap for the derived 3-genes prognostic model; F ROC curve for the prognostic model predicting 1, 2, and 3-year survival
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highlighted genes like ZCCHC12, RXRG, and DOC9K-
AS2 due to their substantial p-values, suggesting poten-
tial prognostic relevance. Figure  6e presents the risk 
score distribution, survival status, and a gene expression 
heatmap of the 3-genes prognostic model, demarcating 
two distinct risk groups: ‘High’ and ‘Low’. Lastly, Fig.  6f 
showcases the ROC curve for this model, predicting 
1-year, 2-year, and 3-year survival, validating its accuracy 
with corresponding AUC values.

Discussion
Published research studies had reported that m6A genes 
showed their crucial biological [42] and clinical functions 
[43] on tumor development, clinical therapeutic resist-
ance and immune oncology response via cross-work 
among the m6A regulators [44]. Currently, the effects of 
m6A modification patterns on the TIME were explored 
in gastric cancer. [26] Jianzhong Hou et  al.’s work [45] 
showed the importance to study m6A in TC. They evalu-
ated the expressed of m6A regulators between tumor and 
normal samples, and correlation expression levels with 
clinical parameters. In our study, the role of m6A modi-
fication in the molecular subtype and immune landscape 
of TC was profiled to deep our knowledge of the immune 
oncology response based on TIME and provide more 
potentially effective ICT clinical treatment strategies.

The success of tumor immunotherapy depends on the 
induction of immune effector mechanisms, and CD8-
positive T lymphocytes are an important part. It had 
been reported that METTL3 restrains papillary thy-
roid cancer progression via m(6)A/c-Rel/IL-8-mediated 
neutrophil infiltration [46]. Moreover, it is difficult for 
patients receiving ICT to obtain biopsy tissue during 
treatment, and the expression of CD8 + T cell effector 
genes has become an important clinical treatment evalu-
ation tool. Our study has found that the m6Acluster-c3 in 
THCA samples can limit the infiltration of T cells, result-
ing in the blockage of the process of presenting anti-
gens in tumor immunity, thereby inhibiting the immune 
function of T cells and helping the immune escape of 
tumor cells. In addition, immune checkpoint genes also 
showed a positive correlation with the m6Acluster-c3, 
which jointly contributed to the immune escape of tumor 
cells. Therefore, we can think that the m6Acluster-c3 is 
involved in the immunosuppressive tumor microenviron-
ment of THCA.

Molecular genotyping based on genomic profiling 
[47–49] improves the clinical utility of TC patients in 
the future. Some research had found the unique RNA 
expression, SNPs and CNVs molecular character in TC 
by TCGA-THCA database [50, 51]. In current study, we 
identified m6A modification clusters with significantly 

different TIMEs based on 24 m6A gene regulators, of 
which 4 were significantly different: Differential drug 
treatment sensitivity, differences in aneuploidy, over-
all somatic copy number changes, expression levels of 
immune-related genes, and clinical outcome (OS). In our 
study, it can be concluded that the tumor growth rate 
is higher in m6Acluster-C1 because C1 shows enriched 
pathways associated with full immune activation and 
relatively high T cell function. Accordingly, it was not 
shown that c3 exhibited activated immunity but poor 
survival prognosis [52]. To accurately indicate m6A 
methylation levels, we applied a method called m6Ascore 
of individual TC patient to facilitate efficient and safe 
clinical application in TC patients. After an integrated 
analysis, it was revealed that m6Ascore may play a role 
in individualized immunotherapy as a potential inde-
pendent prognostic factor for TC patients. In our study, 
negative correlation between m6Ascore and CNV bur-
den has been found, which participated in the generation 
and metastasis of tumors, indicating the important role 
of m6A regulation in TC development. In this study, the 
clinical value of m6Ascore was validated in TC patients 
in cold immune state (m6Acluster-c3). It is well known 
that response to anti-PD-1/PD-L1 ICT therapy can be 
driven by pre-existing CD8 + T cell infiltration and high 
tumor mutational burden (TMB) [53, 54]. Thus, m6As-
core, a potential indicator of ICT therapy, can be added 
as one of them.

The study found a relationship between m6A altera-
tions and copy number variation, and the link between 
the two and the immunological landscape of TC tumors 
was also investigated. Through in-depth analysis of m6A 
alteration patterns in individual TC patients, we have 
increased our understanding of the heterogeneity of TC 
tumor immune infiltration and the tumor immunological 
landscape, hoping to play a more role in the development 
of better novel immunotherapies for TC patient. We also 
stablished a three-gene clinical prognosis model for thy-
roid cancer based on 4 m6a cluster expression. We recog-
nize that the sole reliance on the TCGA database, while 
a valuable resource, may not capture the full spectrum of 
variability present in the broader patient population. The 
limited sample size inherent to this singular dataset could 
potentially influence the robustness of our proposed m6A 
methylation modification regulator landscape for thyroid 
cancer. The pursuit of these future studies will be pivotal 
in enhancing the predictive power and clinical relevance 
of our findings, thereby contributing to the personalized 
treatment of thyroid cancer. Considering that our previ-
ous results lack clinical cohorts to verify, future explo-
ration needs to be carried out on the basis of further 
verification of large cohort prospective clinical trials.
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