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Abstract 

Background Heterozygous loss-of-function mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) 
gene cause CHARGE syndrome characterized by various congenital anomalies. A majority of patients with CHARGE 
syndrome present with congenital hypogonadotropic hypogonadism (HH), and combined pituitary hormone defi-
ciency (CPHD) can also be present. Whereas CHD7 mutations have been identified in some patients with isolated HH 
without a diagnosis of CHARGE syndrome, it remains unclear whether CHD7 mutations can be identified in patients 
with CPHD who do not fulfill the criteria for CHARGE syndrome.

Case presentation A 33-year-old woman was admitted to our hospital. She had primary amenorrhea and was at 
Tanner stage 2 for both pubic hair and breast development. She was diagnosed with CPHD (HH, growth hormone 
deficiency, and central hypothyroidism), and a heterozygous rare missense mutation (c.6745G > A, p.Asp2249Asn) in 
the CHD7 gene was identified. Our conservation analysis and numerous in silico analyses suggested that this muta-
tion had pathogenic potential. She had mild intellectual disability, a minor feature of CHARGE syndrome, but did not 
fulfill the criteria for CHARGE syndrome.

Conclusions We report a rare case of CPHD harboring CHD7 mutation without CHARGE syndrome. This case provides 
valuable insights into phenotypes caused by CHD7 mutations. CHD7 mutations can have a continuous phenotypic 
spectrum depending on the severity of hypopituitarism and CHARGE features. Therefore, we would like to propose a 
novel concept of CHD7-associated syndrome.
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Background
Heterozygous loss-of-function mutations in the chro-
modomain helicase DNA-binding protein 7 (CHD7) 
gene constitute the major pathogenic cause of CHARGE 
syndrome [1, 2]. CHARGE syndrome is a rare disorder 

characterized by various congenital anomalies includ-
ing coloboma of the eye, heart defects, choanal atresia, 
retardation of growth and development, genital hypo-
plasia, and ear abnormalities [3, 4]. Hypothalamic-pitui-
tary dysfunction is common in CHARGE syndrome and 
approximately 60–80% of individuals with CHARGE syn-
drome present with congenital hypogonadotropic hypo-
gonadism (HH) [5–11]. Combined pituitary hormone 
deficiency (CPHD) can also be present. Growth hormone 
(GH) and thyroid-stimulating hormone (TSH) deficien-
cies occur at rates of 9–34% [5–8] and 8–18% [6–9], 
respectively, and sporadic cases of adrenocorticotropic 
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hormone (ACTH) deficiency have been reported [12, 
13]. Rarely do structural pituitary abnormalities such as 
anterior pituitary hypoplasia occur in combination [13]. 
CHD7 mutations have also been identified in 5–19% of 
patients with isolated HH who were not diagnosed with 
CHARGE syndrome [11, 14–20]. However, it remains 
unclear whether CHD7 mutations can be detected in 
patients with CPHD who do not fulfill the criteria for 
CHARGE syndrome. Herein, we present a rare case of 
patient with CPHD, who despite not fulfilling the diag-
nostic criteria for CHARGE syndrome, presented with 
minor characteristics and a CHD7 missense mutation 
with pathogenic potential.

Case presentation
The patient provided written informed consent for the 
publication of this case report. A 33-year-old woman 
was admitted to our hospital for treatment of diabe-
tes mellitus. She had been born full-term, with a weight 
of approximately 2800  g, with no perinatal or infantile 
developmental abnormalities although detailed informa-
tion was unavailable. Around the age of 7 years, she had 
begun to experience a decline in academic performance 
and weight gain. She had been the first or second short-
est in her class until approximately 15 years, after which 
her height begun to increase. At the age of 15 years, she 
visited a hospital with a chief complaint of amenorrhea. 
Further examination was not performed because her 
symptom had been attributed to obesity; however, she 
did not menstruate thereafter. At the age of 16  years, 
she got a job, but had to change employment frequently 
because she could not work for long periods at one job. 
At the age 33 years, she was incidentally diagnosed with 
diabetes at another clinic and referred to our hospital.

On admission, the patient’s height, weight, body mass 
index, waist circumference, and arm span were 161.1 cm, 
97.1 kg, 37.4 kg/m2, 111.2 cm, and 160.0 cm, respectively. 
Her visceral fat area estimated via bioelectrical imped-
ance analysis using EW-FA90 (Panasonic Corporation, 
Osaka, Japan) was 166  cm2. She had no history of head 
trauma or head surgery, and neither drank alcohol nor 
took any medications. Although her maternal grand-
mother had obesity and diabetes, she had no other fam-
ily members with obesity, diabetes, or endocrinological 
disorders, and there were no consanguineous marriages 
in her family. She had primary amenorrhea and was at 
Tanner stage 2 for both pubic hair and breast develop-
ment. Her intelligence quotient, as determined by the 
Wechsler Adult Intelligence Scale, fourth edition, was 
60, indicating mild intellectual disability. Her laboratory 
findings are presented in Table  1. Her hemoglobin A1c 
level was 9.7%. She had thrombocytopenia, prolonged 
prothrombin time, and elevated liver fibrosis marker 

levels, suggestive of liver cirrhosis. Viral hepatitis, auto-
immune hepatitis, primary biliary cholangitis, Wilson’s 
disease, and alcoholic hepatitis were unlikely differen-
tial diagnoses, suggesting that her liver dysfunction was 
caused by nonalcoholic steatohepatitis (NASH). Her 
endocrinological findings are presented in Tables  1 and 
2. HH and growth hormone deficiency (GHD) were con-
firmed by comparing baseline hormonal levels and the 
results of stimulation tests. Central hypothyroidism (CH) 
was diagnosed due to low free thyroxine level and normal 
or mildly elevated TSH levels at the baseline, although 
the TSH level responded normally to thyrotropin-releas-
ing hormone (TRH) stimulation. Plasma ACTH levels 
showed normal responses in both the insulin tolerance 
test (ITT) and corticotropin-releasing hormone (CRH) 
stimulation test. Cortisol response was almost normal in 
the rapid ACTH stimulation test but blunted in the ITT 
and CRH stimulation test. Based on these results and the 
absence of clinical signs of adrenal insufficiency, central 
adrenal insufficiency was not apparent. Her prolactin 
level responded normally to TRH stimulation. Thus, she 
was diagnosed with CPHD (combined HH, GHD, and 
CH). Brain magnetic resonance imaging (MRI) revealed 
anterior pituitary hypoplasia (Fig. 1). There were no other 
abnormal intracranial findings, including those of the 
posterior pituitary and pituitary stalk. Abdominal MRI 
showed morphological features of cirrhosis (Fig. 2a) and 
esophagogastroduodenoscopy (EGD) showed esopha-
geal varices (Fig. 2b). Liver biopsy revealed severe fibrosis 
(Fig. 2c). Although there was no histological evidence of 
NASH, such as severe steatosis or ballooning, the clini-
cal course and laboratory findings shown in Table 1 sug-
gested that the liver cirrhosis was caused by burnt-out 
NASH. Based on these results, we diagnosed her with 
CPHD (combined HH, GHD, and CH) with comorbid 
diabetes, severe obesity, and liver cirrhosis probably due 
to NASH. She started treatment with recombinant GH, 
levothyroxine sodium, and estrogen/progesterone ther-
apy. Her glycemic control was remarkably improved by 
treatment with linagliptin and empagliflozin.

Her lack of secondary sexual characteristics made us 
suspect that genetic abnormalities may have contrib-
uted to her pituitary hormone deficiency. We analyzed 
the coding and splicing regions of 17 major genes asso-
ciated with congenital hypopituitarism (HESX1, LHX3, 
LHX4, OTX2, POU1F1, PROKR2, PROP1, SOX2, SOX3, 
CHD7, FGF8, FGFR1, GLI2, IGSF1, KISS1R, SOX10, and 
WDR11) using the NextSeq Sequencing System (Illu-
mina, San Diego, CA, USA) at the Kazusa DNA Research 
Institute (Kisarazu, Japan) [21]. As a result, a heterozy-
gous missense mutation (c.6745G > A, p.Asp2249Asn) 
in the CHD7 gene was identified. This mutation had not 
been reported in ClinVar and the CHD7 database (www. 
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chd7. org), and the minor allele frequency was < 0.1% 
in several population databases (0.0011% in Genome 
Aggregation Database v2.1.1, 0.0015% in Trans-Omics 
for Precision Medicine, 0% in the Human Genetic Vari-
ation Database, and 0.099% in the Japanese Multi Omics 
Reference Panel [14KJPN]). The nucleotide position 
showed a phyloP conservation score [22] of 7.526 for 
100 vertebrates, a PhastCons score [22] of 1.00 for 100 
vertebrates, and a Genomic Evolutionary Rate Profil-
ing score [23] of 5.3 for mammalian alignment, indicat-
ing that this mutation occurred in a highly conserved 
nucleotide. Numerous in silico prediction tools such as 
Polymorphism Phenotyping v2 [24], MutationTaster [25], 

Functional Analysis through Hidden Markov Models 
[26], Mendelian Clinically Applicable Pathogenicity [27], 
and Combined Annotation-Dependent Depletion [28] 
(CADD score, 25.4) suggested that this mutation causes 
changes in protein function, although the mutation was 
considered to have uncertain significance according to 
the American College of Medical Genetics and Genomics 
(ACMG) guidelines [29]. Taken together, the CHD7 mis-
sense mutation in this patient was suggested to be patho-
genic and contributory to the CPHD.

The patient underwent ophthalmologic and otorhi-
nolaryngologic examinations, brain MRI, echocardi-
ography, abdominal MRI, and EGD for the evaluation 

Table 1 Laboratory characteristics of the patient at the time of admission

Reference ranges are shown in parentheses

WBC white blood cell count, RBC red blood cell count, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, eGFR estimated 
glomerular filtration rate, AST aspartate aminotransferase, ALT alanine aminotransferase, ALP alkaline phosphatase, γ-GTP γ-glutamyl transpeptidase, PT prothrombin 
time, APTT activated partial thromboplastin time, FPG fasting plasma glucose, IRI immunoreactive insulin, CPR C-peptide immunoreactivity, GADAb anti-glutamic acid 
decarboxylase antibody, HBsAg hepatitis B surface antigen, HCVAb hepatitis C virus antibody, AMA2 anti-mitochondrial M2 antibody, ANA antinuclear antibody, TIBC 
total iron binding capacity, M2BPGi Mac-2 binding protein glycosylated isomers, 4C7S type IV collagen 7S, LH luteinizing hormone, FSH follicle-stimulating hormone, 
IGF-1 insulin-like growth factor-1, TSH thyroid-stimulating hormone, FT3 free 3,5,3′-triiodothyronine, FT4 free thyroxine, ACTH adrenocorticotropic hormone, DHEA-S 
dehydroepiandrosterone sulfate

Hematologic characteristics CPR 1.5 ng/mL (1.0–1.6)

WBC 3,900 /µL (3,500–9,800) GADAb  < 5.0 U/mL (< 5.0)

RBC 435 ×  104 /µL (376–500) HBsAg 0.00 IU/mL (0.00–0.04)

Hemoglobin 13.1 g/dL (11.3–15.2) HCVAb 0.1 S/CO (< 1.0)

Platelet 5.5 ×  104 /µL (13.0–36.9) AMA2  < 1.5 (< 7)

Biochemical characteristics ANA 20 (< 40)

Total cholesterol 161 mg/dL (139–220) Iron 103 µg/dL (40–188)

Triglycerides 113 mg/dL (36–149) TIBC 265 µg/dL (246–410)

HDL-C 48 mg/dL (40–87) Ferritin 121 ng/mL (5–152)

LDL-C 88 mg/dL (59–139) Ceruloplasmin 25 mg/dL (21–37)

Urea nitrogen 9.7 mg/dL (8.4–20.4) M2BPGi 4.27 (< 1.0)

Creatinine 0.50 mg/dL (0.40–0.74) 4C7S 12.2 ng/mL (< 4.4)

eGFR 112.2 mL/min/1.73  m2 Endocrinological characteristics
Total protein 6.7 g/dL (6.7–8.2) LH  < 0.10 mIU/mL

Albumin 3.6 g/dL (4.0–4.8) FSH  < 0.10 mIU/mL

Total bilirubin 2.0 mg/dL (0.2–1.2) Estradiol 24.0 pg/mL

AST 43 U/L (10–33) Growth hormone  < 0.03 ng/mL (0.13–9.88)

ALT 22 U/L (6–35) IGF-1  < 7 ng/mL (119–283)

ALP 100 U/L (38–113) TSH 5.18 µU/mL (0.61–4.23)

γ-GTP 152 U/L (8–60) FT3 1.33 pg/mL (1.68–3.67)

PT 54.9 % (70–120) FT4 0.63 ng/dL (0.7–1.48)

APTT 38.4 sec (23.0–39.0) ACTH 28.8 pg/mL (7.2–63.3)

Uric acid 3.9 mg/dL (2.2–6.7) Cortisol 5.0 µg/dL (3.7–19.4)

Sodium 142 mEq/L (135–147) DHEA-S 33 µg/dL (58–327)

Potassium 3.6 mEq/L (3.6–5.0) Prolactin 12.60 ng/mL (6.12–30.54)

Chloride 105 mEq/L (98–108) Urinalysis findings
Calcium 8.8 mg/dL (8.8–10.2) U-CPR 172 µg/day (29.2–167)

FPG 115 mg/dL (70–110) U-Albumin 9 mg/day (< 30)

Hemoglobin A1c 9.7 % (4.6–6.2) U-Copper 13.5 µg/day (2.5–20.0)

IRI 10.6 µU/mL (5–10) U-Cortisol 27.6 µg/day (5.5–66.7)

http://www.chd7.org
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of CHARGE features. Apart from CPHD and intel-
lectual disability, there was no evidence of CHARGE 
or CHARGE-like features such as coloboma of the 
eyes, atresia of choanae, anomalies of the semicircular 
canals, external or middle ear anomalies, hearing loss, 
hyposmia, olfactory bulb hypoplasia, cranial nerve 
dysfunctions, cleft lip/palate, anomalies of the medias-
tinal viscera, and renal anomalies.

Discussion and conclusions
Herein, we present the clinical history of a 33-year-
old woman with CPHD (HH, GHD, and CH) alongside 
comorbid diabetes, severe obesity, and liver cirrhosis 
probably due to NASH. Despite not fulfilling the crite-
ria for CHARGE syndrome, the patient had intellectual 
disability, one of its minor features, and a CHD7 mis-
sense mutation with pathogenic potential.

Table 2 Results of patient’s pituitary stimulation tests

Reference ranges are shown in parentheses

LHRH luteinizing hormone releasing hormone, LH luteinizing hormone, FSH follicle-stimulating hormone, GH growth hormone, ACTH adrenocorticotropic hormone, 
GHRP-2 growth hormone releasing peptide-2, TRH thyrotropin-releasing hormone, TSH thyroid-stimulating hormone, PRL prolactin, FT4 free thyroxine, CRH 
corticotropin-releasing hormone

LHRH stimulation test 0 min 30 min 60 min 90 min 120 min

LH, mIU/mL  < 0.10 0.15 0.13 0.13 0.13

FSH, mIU/mL  < 0.10 0.16 0.19 0.25 0.28

Insulin tolerance test 0 min 15 min 30 min 45 min 60 min 75 min 90 min 120 min

GH, ng/mL (0.13–9.88)  < 0.03 0.04 0.07 0.10 0.08 0.05 0.05 0.05

ACTH, pg/mL (7.2–63.3) 25.3 25.2 26.3 112.2 253.1 128.9 79.9 47.1

Cortisol, µg/dL (3.7–19.4) 4.1 5.3 4.2 7.1 13.7 14.7 13.8 10.6

Glucose, mg/dL (70–110) 103 85 50 37 127 89 55 66

GHRP-2 stimulation test 0 min 15 min 30 min 45 min 60 min

GH, ng/mL (0.13–9.88)  < 0.03 0.05 0.04  < 0.03  < 0.03

TRH stimulation test 0 min 30 min 60 min 90 min 120 min

TSH, µU/mL (0.61–4.23) 3.83 36.23 36.80 35.22 29.06

PRL, ng/mL (6.12–30.54) 12.83 31.73 19.84 17.86 15.82

CRH stimulation test 0 min 30 min 60 min 90 min 120 min

ACTH, pg/mL (7.2–63.3) 17.7 95.5 62.8 39.0 33.5

Cortisol, µg/dL (3.7–19.4) 6.5 14.8 14.3 12.1 10.8

Rapid ACTH test 0 min 30 min 60 min

Cortisol, µg/dL (3.7–19.4) 4.6 15.3 17.6

Fig. 1 Gadolinium-enhanced brain magnetic resonance imaging showing anterior pituitary hypoplasia (circle)
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Whether the CHD7 mutations can be detected in 
patients with CPHD who do not satisfy the criteria for 
CHARGE syndrome remains to be elucidated. Recently, 
a synonymous CHD7 mutation predicted to affect splic-
ing had been identified in one of 80 patients with CPHD 
who underwent a comprehensive genetic examination 
[30]. However, this report does not include a detailed 
description of CHARGE features. Several studies have 
highlighted the importance of careful evaluation of 
CHARGE features in patients with CHD7 mutations, as a 
subset of patients with apparently isolated HH harboring 
CHD7 mutations were subsequently found to have mul-
tiple CHARGE features and were reclassified as having 
CHARGE syndrome [31–33]. Our patient is a rare case 
of CPHD harboring a CHD7 mutation that, after detailed 
examinations, does not certainly fulfill the criteria for 
CHARGE syndrome.

In patients with isolated HH harboring CHD7 muta-
tions without CHARGE syndrome, some patients have 
minor CHARGE features, such as hearing loss or intel-
lectual disability [11, 15–20]. In addition, CHD7 muta-
tions in CHARGE syndrome are typically truncating and 
can lead to serious genetic dysfunction, whereas muta-
tions in isolated HH with or without minor CHARGE 
features are predominantly of the missense type that has 
less impact on gene function compared with truncating 
mutation [15, 16]. Furthermore, following the classifica-
tion of missense mutations in patients with isolated HH 
based on ACMG guidelines, minor CHARGE features 

have been reported to be more commonly present in 
patients with pathogenic or likely pathogenic mutations 
than in those with uncertain significance mutations [20]. 
These pieces of evidence suggest that isolated HH har-
boring CHD7 mutations is a mild form of CHARGE syn-
drome. Given that our patient had intellectual disability, 
which is a minor feature of CHARGE syndrome, and that 
the CHD7 mutation was of the missense type, our patient 
with CPHD may also be considered as having a mild form 
of CHARGE syndrome. Moreover, based on the above 
findings, including those of our patient, we speculate 
that CHD7 mutations may have a continuous phenotypic 
spectrum depending on the severity of hypopituitarism 
and CHARGE features, and propose a novel concept of 
CHD7-associated syndrome, including CHARGE syn-
drome (Fig. 3).

Previous studies have indicated that HH caused by 
CHD7 mutations is due to hypothalamic gonadotropin-
releasing hormone (GnRH) deficiency resulting from the 
impaired migration of GnRH-synthesizing neurons that 
migrate alongside the olfactory fibers during embryonic 
development [11, 34]. This postulated etiology is con-
sistent with the observations that most individuals with 
CHARGE syndrome have olfactory dysfunction and do 
not have abnormalities in other anterior pituitary hor-
mone levels or pituitary morphology. However, a subset 
of individuals with CHARGE syndrome can have CPHD 
[5–9, 12, 13], and some of these patients can demon-
strate structural pituitary abnormalities such as anterior 

Fig. 2 a: Abdominal magnetic resonance imaging showing morphological features characteristic of cirrhosis such as irregularity of the liver 
surface, enlargement of the left lobe, and splenomegaly (arrowhead). b: Esophagogastroduodenoscopy showing esophagus varices (arrowhead). c: 
Histological analysis of the liver with Masson’s trichrome staining showing severe fibrosis (arrow) and mild steatosis (arrowhead)
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pituitary hypoplasia [13], similar to that observed in our 
patient. CHD7 is expressed in the olfactory epithelium 
associated with the migration of GnRH neurons as well 
as the developing anterior pituitary and hypothalamus 
in both mice and humans [35, 36]. CHD7 has also been 
identified as a SOX2 transcriptional cofactor [37]. In 
addition, recent studies have shown that CHD7-deficient 
mice have hypoplastic Rathke’s pouches [38] and reduced 
OTX2 mRNA expression [39]. Both SOX2 and OTX2 are 
associated with pituitary development and differentia-
tion [40, 41]. These pieces of evidence suggest that CHD7 
potentially plays a role in the development and function 
of the hypothalamic-pituitary axis and that CHD7 muta-
tions can result in variable degrees of hypopituitarism, 
as well as HH. Further studies are needed to elucidate 
more detailed mechanisms underlying the relationship 
between CHD7 and the hypothalamic-pituitary axis.

Our patient had experienced short stature until approx-
imately 15 years of age, after which she had grown taller 
and had attained normal height despite GHD. Growth 
without GH has been reported in rare cases of hypopitui-
tarism untreated until adulthood [42–44]. Hyperinsuline-
mia, hyperleptinemia, or delayed epiphyseal maturation 
caused by concomitant HH have been postulated as pos-
sible underlying mechanisms [44, 45]. Several factors 
such as endocrine, paracrine, intracellular, or extracellu-
lar matrix factors may also contribute to normal growth 
in GHD [46]. In fact, previous evidence has shown that 

the GH–insulin-like growth factor-1 (IGF-1) axis is just 
one of many regulatory systems that control height [46].

In our patient, long-term untreated GHD and CH may 
have contributed to the development of diabetes, severe 
obesity, and liver cirrhosis probably due to NASH [47]. 
In particular, GHD can induce NASH, and liver fibrosis 
is associated with a lower IGF-1 level even in adolescents 
and young adults with GHD [48]. GH replacement ther-
apy improves liver dysfunction and histological hepatic 
characteristics, including steatosis and fibrosis, as well as 
metabolic abnormalities [49, 50]. However, it is unclear 
to what extent GH replacement therapy would improve 
the liver function of our patient because of the severe 
advanced cirrhosis. Therefore, we will carefully monitor 
the effect of the treatment on her liver function.

The present case report had several limitations. First, 
we could not perform genetic analyses on the proband’s 
parents. Most CHD7 truncating mutations in typical 
CHARGE syndrome are heterozygous de novo, whereas 
CHD7 missense mutations in isolated HH are often 
inherited from unaffected parents, suggesting incom-
plete penetrance of the phenotype of pituitary hormone 
deficiencies in individuals harboring CHD7 missense 
mutations [15–18]. Thus, the CHD7 mutation observed 
in our patient may be inherited from either unaffected 
parent. Second, a limited number of genes associated 
with pituitary hormone deficiencies were analyzed. 
Although various genes associated with congenital 

Fig. 3 The concept of CHD7-associated syndrome. CHD7 mutations can have a continuous phenotypic spectrum depending on the severity of 
hypopituitarism and CHARGE features. HH, congenital hypogonadotropic hypogonadism; CHD7, chromodomain-helicase-DNA-binding protein 7; 
CPHD, combined pituitary hormone deficiency
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pituitary hormone deficiencies have been identified, a 
majority of the related genes remain unknown [51]. In 
addition, oligogenic inheritance has been observed in 
a number of cases of isolated HH [16–18, 52]. There-
fore, some unknown gene mutations in addition to the 
observed CHD7 mutation may contribute to the pheno-
type of our patient in an additive or synergistic manner, 
and the oligogenicity may explain the incomplete pen-
etrance or phenotypic variations in patients harboring 
CHD7 mutations. Third, the observed CHD7 mutation 
was not confirmed by Sanger sequencing. However, the 
next-generation sequencing workflow we employed has 
been shown to have high specificity and can omit the 
need for confirmatory assessment by Sanger sequenc-
ing for variants with high-quality scores [21]. Finally, 
as is the case with most previously reported cases of 
CHD7 missense mutations, we were unable to con-
firm the functional abnormality of the observed CHD7 
mutation via in  vitro or in  vivo experiments. Despite 
these limitations, the findings that our patient’s CHD7 
mutation was an ultra-rare variant (< 0.1%), occurred 
at a highly conserved nucleotide, and was predicted to 
be damaging by numerous major bioinformatic tools, 
strongly suggest that this missense mutation was asso-
ciated with her phenotype.

In conclusion, we report a rare case of CPHD with a 
minor feature harboring a CHD7 mutation. This case 
does not only imply that CHD7 plays a potential role 
in the development and function of the hypothalamic-
pituitary axis but provides valuable insights into phe-
notypes caused by CHD7 mutations. CHD7 mutations 
can have a continuous phenotypic spectrum depending 
on the severity of hypopituitarism and CHARGE fea-
tures. Therefore, we would like to propose a novel con-
cept of CHD7-associated syndrome.
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