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Summary
Background To compare the ability of the Cox regression and machine learning algorithms to predict the survival of 
patients with Anaplastic thyroid carcinoma (ATC).

Methods Patients diagnosed with ATC were extracted from the Surveillance, Epidemiology, and End Results 
database. The outcomes were overall survival (OS) and cancer-specific survival (CSS), divided into: (1) binary data: 
survival or not at 6 months and 1 year; (2): time-to-event data. The Cox regression method and machine learnings 
were used to construct models. Model performance was evaluated using the concordance index (C-index), brier score 
and calibration curves. The SHapley Additive exPlanations (SHAP) method was deployed to interpret the results of 
machine learning models.

Results For binary outcomes, the Logistic algorithm performed best in the prediction of 6-month OS, 12-month 
OS, 6-month CSS, and 12-month CSS (C-index = 0.790, 0.811, 0.775, 0.768). For time-event outcomes, traditional 
Cox regression exhibited good performances (OS: C-index = 0.713; CSS: C-index = 0.712). The DeepSurv algorithm 
performed the best in the training set (OS: C-index = 0.945; CSS: C-index = 0.834) but performs poorly in the 
verification set (OS: C-index = 0.658; CSS: C-index = 0.676). The brier score and calibration curve showed favorable 
consistency between the predicted and actual survival. The SHAP values was deployed to explain the best machine 
learning prediction model.

Conclusions Cox regression and machine learning models combined with the SHAP method can predict the 
prognosis of ATC patients in clinical practice. However, due to the small sample size and lack of external validation, our 
findings should be interpreted with caution.
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Introduction
Thyroid carcinoma is the fifth most common cancer 
among women in the United States [1]. In recent decades, 
the incidence of thyroid carcinoma has increased dra-
matically in many countries [2]. A study of the United 
States analyzed the 10-year data from 2007 to 2016, and 
reported that the incidence of thyroid carcinoma among 
young people of all ages (15–39 years old) ranked the top 
three [3]. Among thyroid carcinoma, anaplastic thyroid 
carcinoma (ATC) accounts for 1-2% [4], but it is the most 
aggressive type and highly malignant, which is the main 
cause of death associated with thyroid malignant tumors. 
The median survival time of ATC is only 5–6 months [5]. 
The quality of life among ATC patients is significantly 
reduced, coupled with persistent occupation of medical 
resources and high mortality rate, which result in a heavy 
economic and social burden. Therefore, accurate predic-
tion of ATC patient survival and understanding the driv-
ers of these predictions are critical for clinically targeted 
therapy.

The known risk factors related to the prognosis of ATC 
include age, sex, race, marital status, insurance, socioeco-
nomic status, level of education, tumor stage, tumor size, 
multifocality, surgery, radiotherapy, chemotherapy and 
so on [6–11]. Additionally, the AJCC 8th edition reveals 
a better performance than the AJCC 7th edition TNM 
staging in predicting survival of ATC patients [12]. Tra-
ditional methods for predicting survival of ATC patients 
are based on existing clinical and sociodemographic pre-
dictors, using Cox proportional hazards (Cox) regression 
analysis to establish nomograms [12–16]. Although the 
estimated C-index calculated by some models appears 
to be ideal, there is still a risk of overfitting. With the 
rapid development of precision medicine, machine 
learning (ML) has been widely applied in medical fields 
such as outcome prediction, diagnosis, medical image 
interpretation and treatment [17]. Applications of ML 
in thyroid carcinoma consist of diagnosis, nodule iden-
tification and risk factor analysis [18–21]. However, rare 
data show applications of ML for prognostic analysis in 
ATC patients. ML does not need to assume the relations 
between input variables and outputs variables, as well as 
takes into account all possible interactions and effect cor-
rections between variables [22]. More importantly, ML is 
an efficient and accurate substitute of semi-parametric 
and parametric models.

In this study, we aimed to compare the application of 
Cox regression and ML algorithms for survival predic-
tion among ATC patients. Strategies aimed at selecting 
most suitable predictive model could help clinicians to 
intervene risk factors timely and prescribe treatments 
properly, enhancing the understanding of decision-mak-
ing process for assessing ATC.

Methods
Study population
The data for this study were obtained from the SEER 
database: Surveillance, Epidemiology, and End Results 
(SEER) Program (www.seer.cancer.gov) SEER*Stat Data-
base: Incidence - SEER 18 Regs Custom Data (with addi-
tional treatment fields). We used SEER*stat 8.3.9 software 
to obtain clinical data of patients diagnosed with ana-
plastic thyroid carcinoma during 2004–2015. The inclu-
sion criteria were as follows: (1) topography code: C73.9 
Thyroid gland; (2) ICD-O-3 histologic codes: 8020–8035, 
including “8020/3: Carcinoma, undifferentiated, NOS, 
8021/3: Carcinoma, anaplastic, NOS, 8022/3: Pleomor-
phic carcinoma, 8030/3: Giant cell and spindle cell car-
cinoma, 8031/3: Giant cell carcinoma, 8032/3: Spindle 
cell carcinoma, NOS, 8033/3: Pseudosarcomatous car-
cinoma, 8034/3: Polygonal cell carcinoma, 8035/3: Car-
cinoma with osteoclast-like giant cells. We excluded 
patients with Not first malignant primary and Survival 
time unknown or less than 1 month.

Predictor variables and outcomes
We collected all relevant data including Age, Sex, Race, 
Marital status, Insurance, No high school diploma, Fami-
lies below poverty, AJCC TMN stage, Tumor size, Mul-
tifocality, Regional lymph node surgery, Thyroid surgery, 
Radiotherapy, Chemotherapy. According to the AJCC 8th 
edition TNM staging system for thyroid cancer, differ-
ent TNM staging were converted into 8th edition TNM 
staging uniformly [23]. The T staging of ATC is not only 
classified in T4 stage. We use the same definition for T 
staging for ATC and differentiated thyroid cancer (DTC). 
According to tumor size and tumor extension, the differ-
ent T staging of AJCC were unified into AJCC 8th edition 
T staging, which was divided into T1 stage, T2 stage, T3a 
stage, T3b stage and T4 stage. In this study, X-tile soft-
ware was used to analyze continuous variables to obtain 
the best cut-off value and group them. The variables ana-
lyzed by X-tile software included: Age, No high school 
diploma, Families below poverty, Tumor size. In addi-
tion, groups with small numbers were merged: T1 and T2 
stages of AJCC were merged into T1-2, and T3a and T3b 
stages were merged into T3 stage.

The primary endpoint of the study were overall survival 
(OS) and cancer-specific survival (CSS). OS was defined 
as the time interval from diagnosis to death from all 
causes, and CSS was from diagnosis to death from that 
tumor alone. According to the different types of out-
comes, we divided them into binary outcomes: 6-month 
OS, 12-month OS, 6-month CSS and 12-month CSS. In 
addition, the outcomes were also divided into time-to-
event data for analysis.

http://www.seer.cancer.gov
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Data preprocessing
We counted the missing rates of all predictors, and 
retained factors with a missing rate of less than 30%. 
K-Nearest Neighbor (KNN) algorithms were used to fill 
missing values. Multicollinearity is explained by the vari-
ance inflation factor (VIF). VIF < 10 indicates that there 
is no multicollinearity among the variables. Correlation 
was determined by Spearman correlation analysis. A cor-
relation coefficient greater than 0.5 indicates a significant 
correlation between variables.

Model development and evaluation
For binary outcomes, we used four machine learning 
algorithms, Logistic, Random Forests, Extreme Gradient 
Boosting (XGBoost) and Adaptive Boosting (AdaBoost), 
to construct models and compared the pros and cons 
of these models. Similarly, for time-event outcomes, we 
compared the models constructed by COX regression 
with five machine learning algorithms: Survival Tree, 
Survival Support Vector Machine (SVM), Random Sur-
vival Forests, XGBoost and DeepSurv. In this study, 70% 
of all patients were used for training and 30% for valida-
tion using random number table method. The differences 
between the training set and validation set depended on 
the type of outcome variable. If the outcome variable was 
continuous, t-test was used, while if the outcome variable 
was categorical, chi-square test or Fisher’s exact test was 
used. In Cox regression, we use the bidirectional stepwise 
regression method for variable screening which auto-
matically screens the variables with the smallest Akaike 
information criterion (AIC) to construct the model. The 
results of the Cox regression model are presented in the 
nomogram. In machine learnings, we use the XGBoost 
method to filter variables. We use a combination of grid 
search and multiple cross-validation to select the param-
eter values corresponding to the best C-index values as 
model parameters [24].

In order to avoid overfitting, the evaluation of the 
model comprehensively considers the results of the train-
ing set and the validation set, but mainly the results of 
the validation set. We used the C-index to describe the 
discriminativeness of the model. The C-index value can 
generally judge the generalization ability of the model: 
0.5–0.7 means that the model has a weak generalization 
ability, 0.7–0.85 moderate, and 0.85-1.0 strong. In addi-
tion, we also use multiple evaluation indicators such as 
accuracy, sensitivity, and specificity to comprehensively 
evaluate the discriminative ability of the machine learn-
ing model. We used the calibration curve and brier-score 
to evaluate the calibration of the model. In the calibration 
plot, the X-axis represents the predicted survival time 
and the Y-axis the actual survival time with the predicted 
rate falling on the 45° diagonal in a perfect prediction 
model. The lower the Brier-score value, the better the 

calibration. We assessed the net benefit of the model for 
clinical decision making through the DCA curve. Kaplan-
Meier analysis and log-rank test were used to explore dif-
ferences in survival between risk subgroups.

Model interpretation
The SHapley Additive exPlanation (SHAP) is a unified 
framework for interpreting the results of machine learn-
ing models [25]. We utilized SHAP to provide explana-
tions for the final model, including associated risk factors 
causing death in patients with ATC and the importance 
of sorting features. Our study was reported following 
the TRIPOD (Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis) 
statement [26]. All statistical analyses in this study were 
performed using R software (version 4.0.2) and Python 
software (version 3.7.6). P value of < 0.05 was considered 
statistically significant.

Results
Patient characteristics
1190 patients diagnosed with ATC were identified from 
the SEER database from 2004 to 2015. According to the 
exclusion criteria, 730 patients were finally included. The 
flow-process diagram of data screening was shown in 
Fig. 1. Since the missing rate of each variable was < 30%, 
we did not remove the variable with low missing rate. The 
variables with the highest missing rate were insurance 
(22.9%), tumor size (19.5%) and multifocality (18.4%). 
According to the X-tile program, the optimal age cutoff 
points were 60 and 80 years old, and age groups were 
divided into < 60, 60–79 and ≥ 80 years. The optimal cut-
off points divided tumor size into < 6 cm and ≥ 6 cm, no 
high school diploma into < 21% and ≥ 21%, and families 
below poverty into < 14% and ≥ 14%.

Table 1 shows Demographic characteristics of patients 
with ATC. 540 (74.0%) the elderly with age ≥ 60 years, 
441 (60.4%) female and 580 (79.5%) the white race were 
the main cases. According to the 8th edition of the TNM 
staging system, stage IV accounted for the great majority 
of cases (610, 83.6%), followed by stage N1 (431, 59.0%) 
and stage M0 (400, 54.8%). 385 patients (52.7%) under-
went surgical treatment, of which 138 (18.9%) underwent 
thyroid lobectomy and 247 (33.8%) underwent total or 
subtotal thyroidectomy. 281 patients (38.5%) received 
radiotherapy, and nearly half of patients (376, 51.5%) 
received chemotherapy. The 6-month and 12-month OS 
were 35.2% and 23.0%, respectively. The 6-month and 
12-month CSS were 38.1% and 23.0%, respectively.

Except for race (P < 0.001) and no high school diploma 
(P = 0.006), the clinical characteristics of patients with 
ATC in the training set and the validation set were not 
significantly different (P > 0.05). No multicollinearity 
was found among every variable (VIF<10). Spearman 
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correlation showed that the correlation between no high 
school population and families below population was 
strong (0.73), which was low between other variables (all 
< 0.5) (Supplemental Fig. 1).

Model results and model performance
The results of Cox regression model were displayed in 
the nomogram (Fig. 2). The total score was obtained by 
adding the scores corresponding to each predictor. The 
6-month and 12-month OS and CSS corresponding to 
the total score scale under the nomogram were obtained. 
Age, Families below poverty, AJCC T 8th, AJCC M 8th, 
tumor size, surgery, radiotherapy, chemotherapy were 
included in the nomogram for OS and CSS. The tumor 
stage had the greatest impact on survival, and the thera-
peutic schedule also affected the survival of patients with 
ATC: surgery, radiotherapy and chemotherapy. Time-
dependent ROC of the nomogram predicting 6-month, 
1-year OS and CSS were shown in Supplemental Fig. 2. 

The C-index values of 6-month, 1-year OS and 6-month, 
1-year CSS were 0.782, 0.784, 0.780, 0.777, respectively, 
indicating acceptable discriminations.

The ROC curves of machine learning algorithms were 
shown in Fig.  3. C-index values for dichotomous out-
comes were summarized in Table  2, including 6-month 
and 12-month OS and CSS. In the training set, random 
forest algorithm had the largest C-index value and pre-
sented best performance (6-month OS: 0.834; 12-month 
OS: 0.886; 6-month CSS: 0.857; 12-month CSS: 0.910). In 
the validation set, the C-index values of random forests 
algorithm were significantly lower than that in the train-
ing set, due to possible overfitting. Combining the results 
of the training set and the validation set, we found that 
the logistic algorithm presented best performance. In the 
validation set, the C-index values of logistic algorithm 
were (6-month OS:0.790; 12-month OS:0.811; 6-month 
CSS:0.775; 12-month CSS: 0.768). The results of sur-
vival analysis on time-to-event shown that the DeepSurv 

Fig. 1 Flow chart of the screening of SEER database. (Abbreviations: ATC: anaplastic thyroid carcinoma; XGBoost: Extreme Gradient Boosting; Ada-
Boost: Adaptive Boosting; SVM: Support Vector Machine)
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Overall (N = 730) Trainingset (N = 510) Testset (N = 220) P-value
Age
 < 60 190 (26.0%) 142 (27.8%) 48 (21.8%) 0.527

 60–79 155 (21.2%) 262 (51.4%) 123 (55.9%)

 ≧ 80 385 (52.7%) 106 (20.8%) 49 (22.3%)

Sex
 Female 441 (60.4%) 299 (58.6%) 142 (64.5%) 0.364

 Male 289 (39.6%) 211 (41.4%) 78 (35.5%)

Race
 White 580 (79.5%) 395 (77.5%) 185 (84.1%) < 0.001

 Black 65 (8.9%) 50 (9.8%) 15 (6.8%)

 Other 85 (11.6%) 65 (12.7%) 20 (9.1%)

Marital.status
 Married 415 (56.8%) 286 (56.1%) 129 (58.6%) 0.612

 Widowed 148 (20.3%) 105 (20.6%) 43 (19.5%)

 Single 103 (14.1%) 72 (14.1%) 31 (14.1%)

 Divorced or separated 64 (8.8%) 47 (9.2%) 17 (7.7%)

Insurance
 Insured and any medical 714 (97.8%) 496 (97.3%) 218 (99.1%) 0.098

 Uninsured 16 (2.2%) 14 (2.7%) 2 (0.9%)

No.high.school.diploma
 < 21% 552 (75.6%) 378 (74.1%) 174 (79.1%) 0.006

 ≧ 21% 178 (24.4%) 132 (25.9%) 46 (20.9%)

Families.below.poverty
 < 14% 492 (67.4%) 340 (66.7%) 152 (69.1%) 0.197

 ≧ 14% 238 (32.6%) 170 (33.3%) 68 (30.9%)

AJCC.T.8th
 T1-2 29 (4.0%) 18 (3.5%) 11 (5.0%) 0.449

 T3 91 (12.5%) 64 (12.5%) 27 (12.3%)

 T4 610 (83.6%) 428 (83.9%) 182 (82.7%)

AJCC.N.8th
 N0 299 (41.0%) 205 (40.2%) 94 (42.7%) 0.461

 N1 431 (59.0%) 305 (59.8%) 126 (57.3%)

AJCC.M.8th
 M0 400 (54.8%) 277 (54.3%) 123 (55.9%) 0.105

 M1 330 (45.2%) 233 (45.7%) 97 (44.1%)

Tumor.size
 < 6 cm 304 (41.6%) 218 (42.7%) 86 (39.1%) 1

 ≧ 6 cm 426 (58.4%) 292 (57.3%) 134 (60.9%)

Multifocality
 Multifocal 570 (78.1%) 393 (77.1%) 177 (80.5%) 0.77

 Unifocal 160 (21.9%) 117 (22.9%) 43 (19.5%)

Reg.LN.Sur
 None 490 (67.1%) 334 (65.5%) 156 (70.9%) 0.95

 1 to 3 removed 89 (12.2%) 67 (13.1%) 22 (10.0%)

 4 or more removed 109 (14.9%) 79 (15.5%) 30 (13.6%)

 Biopsy or aspiration 42 (5.8%) 30 (5.9%) 12 (5.5%)

Surgery
 None surgery 345 (47.3%) 237 (46.5%) 108 (49.1%) 0.705

 Lobectomy 138 (18.9%) 94 (18.4%) 44 (20.0%)

 Total/near total thyroidectomy 247 (33.8%) 179 (35.1%) 68 (30.9%)

Radiotherapy
 No 449 (61.5%) 318 (62.4%) 131 (59.5%) 1

 Yes 281 (38.5%) 192 (37.6%) 89 (40.5%)

Table 1 Demographic characteristics of patients with ATC
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algorithm presented best performance in the training set 
and was obviously superior to Cox regression algorithm, 
OS (DeepSurv: C-index = 0.945, Cox C-index = 0.709), 
CSS (DeepSurv: C-index = 0.834, Cox: C-index = 0.710). 
However, in the validation set, the machine learning algo-
rithm did not show superiority over Cox regression, OS 
(DeepSurv: C-index = 0.658, Cox: C-index = 0.713), CSS 
(DeepSurv: C-index = 0.834, Cox: C-index = 0.667). In the 
DeepSurv algorithm, the C-index values of the training 
set and the validation set were greatly different, and the 
overfitting was considered.

In the machine learning algorithm (logistic, random 
forest, XGBoost, AdaBoost), we also calculated the accu-
racy, sensitivity and specificity, as shown in Table 2. The 
logistic algorithm had high accuracy, sensitivity and 
specificity, which indicated that the model was effective. 
Combining values of C-index, accuracy, sensitivity and 
specificity, we found that logistic algorithm presented 
best performance in machine learning algorithms. 
According to the calibration curve, the nomogram pre-
dicted the overall survival rate of patients in the training 
set and the validation set and the actual overall survival 
rate had good consistency (Supplemental Fig. 3). In addi-
tion, the logistic algorithm also shown good consistency 
in logistic algorithm (Supplemental Fig. 4). As for Brier-
score, the value of logistic algorithm was the minimum in 
machine learning algorithm, indicating the best calibra-
tion degree. The Brier-scores of Cox regression and logis-
tic algorithm were similar.

To evaluate the practicability of each model, we plot-
ted the DCA curve (Supplemental Fig.  5 and Supple-
mental Fig. 6). DCA curve represents the net benefit of 
clinical decisions. The y-axis represents the net benefit 
and the x-axis represents the risk threshold. The horizon-
tal line indicates all true negative rates and the diagonal 
line indicates all true positive rates. This shown that Cox 
regression model and logistic algorithm had good clini-
cal applicability in predicting the 6-month and 12-month 
survival rates of ATC and had high net benefits. In the 
risk stratification KM curves, the patients were divided 
into high-risk and low-risk groups based on the cut-off 
values of the total score in the nomogram. For OS, the 
cut-off value was 169, and for CSS, the cut-off value was 
174. As shown in Supplemental Fig.  7, the log rank p 
was lower than 0.0001, indicating that there was the sig-
nificant difference between the high-risk group and the 

low-risk group. The results suggested that the nomogram 
had high discrimination for the degree of risk.

Model interpretation of machine learning
We used SHAP to explain the results of the best machine 
learning model. Based on the SHAP algorithm, the fea-
ture ranking interpretations of the logistic algorithm 
were shown in Fig. 4. The attributes of the features pre-
dicting 6-month OS, 12-month OS, 6-month CSS and 
12-month CSS were shown in Fig.  4. In 6-month OS, 
AJCC M 8th, Chemistry, Regional lymph node surgery, 
Tumor size and AJCC T 8th were the characteristics of 
logistic algorithm models, which had the greatest impact 
on the prediction results. The feature ranking shown that 
AJCC TNM staging was an important factor for survival 
prediction of ATC, and AJCC M 8th was the most impor-
tant feature in OS or CSS.

Discussion
By comparing the prediction performance of different 
ML algorithms to the reference method (Cox regression), 
our findings suggested that Cox regression performed 
well as a conventional method for ATC survival predic-
tion. Among ML algorithms, Logistic algorithm demon-
strated the best performance. Combining SHAP values, 
Logistic algorithm illustrated key predictive factors and 
established a high-accuracy survival prediction model. In 
our study, we used the Cox regression model to identify 
the most influential predictors and create a nomogram 
to predict the risk of cancer outcomes for individual 
patients. The nomogram provides a user-friendly tool for 
clinicians to assess the risk of cancer outcomes and strat-
ify patients into low- and high-risk groups, which is use-
ful for clinical decision-making. Furthermore, we used 
the SHAP method to rank the importance of predictors 
and differentiate their impact on the risk of cancer out-
comes. This approach provides a visual and intuitive way 
to identify protective and risk factors and guide clinical 
judgment and decision-making.

Our study solved the limitations of ML in predicting 
the prognosis of ATC survival by including more pos-
sible factors. We collected multifaceted disease-related 
predictors, such as baseline patient information, clinical 
diagnosis, medical therapy, surgery therapy and so on, we 
also extracted relevant variables which may influence the 
development of disease, such as economic condition and 

Overall (N = 730) Trainingset (N = 510) Testset (N = 220) P-value
Chemotherapy
 No/Unknown 354 (48.5%) 256 (50.2%) 98 (44.5%) 0.09

 Yes 376 (51.5%) 254 (49.8%) 122 (55.5%)
Note: *Other include American indian/Alaska native, Asian or Pacific islander

Abbreviations: SEER: Surveillance, Epidemiology, and End Results database; ATC: anaplastic thyroid carcinoma; Reg.LN.Sur: Regional lymph node surgery

Table 1 (continued) 
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Fig. 2 Nomograms for predicting the survival probability of 6-month, 1-year in ATC. Note: (A) Predicting 6-month, 1-year OS, (B) predicting 6-month, 
1-year CSS. (Abbreviations: OS: overall survival; CSS: cancer-specific survival)
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education. And the 8th edition of AJCC TNM staging 
criteria was finally applied to disease strategy for better 
performance. Our models showed a high C-index value, 
indicating a remarkable generalization ability and clinical 
value, providing distinct explanations helping to predict 
survival rate, which drove clinicians to understand the 
decision-making process for assessing disease severity.

Different from our study, other researchers tended to 
apply Cox regression and Logistic regression to analyze 
risk factors and constructed a predictive model. Gui et al. 
[13] found that the important predictors for survival rate 
of ATC were age, historic stage, tumor size, surgery ther-
apy, radiotherapeutic, as analyzed by multivariable Cox 
proportional hazard regression models. In terms of pre-
diction performance, the nomograms showed a C-indexs 
value of 0.765 for OS, and 0.773 for CSS. Based on pre-
operative variables and postoperative variables, Qiu et 
al. [16] constructed two prognostic nomograms, and the 
C-index were 0.6783 and 0.7029. The data for the above 
study were obtained from the SEER database. Meanwhile, 

a retrospective Study from Regional Registry studied 149 
patients with ATC showed that age, tumor size, distant 
metastasis status were independent variables, definitely 
affecting survival rate of ATC, as analyzed by multivari-
able Cox proportional hazard regression [27]. Traditional 
Cox regression is the most convenient way to solve most 
survival prediction problems because its results are easy 
to interpret. However, Cox regression models should be 
used with a minimum of 10 outcome events per predictor 
variable (EPV) [28].

ML is an efficient and accurate substitute to semi-
parametric and parametric models, with the advantages 
of high calculating efficiency and excellent performance. 
ML algorithms do not consider factors of non-propor-
tionality, multicollinearity, or nonlinearity, reducing 
prediction bias caused by modeling uncertainty. Unfortu-
nately, it’s application in the clinical practice is hindered 
by the lack of interpretability. Subsequently, SHAP comes 
into use, aiming to elucidate how the machine models 
run the output process in an easily understood term, and 

Fig. 3 The ROC curves of machine learning models predicting 6-month, 1-year OS and CSS in validation set. (Note: (A) 6-month OS, (B) 12-month OS, 
(C) 12-month OS, (B) 12-month CSS. Abbreviations: OS: overall survival; CSS: cancer-specific survival; AUC: the area under the receiver operating char-
acteristic curve)
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makes up for the disadvantages mentioned above. There 
has been no targeted application of machine learning 
algorithms to predict the survival of patients with ana-
plastic thyroid carcinoma (ATC). Here, we calculated 
subject-level survival curves by analyzing outcomes vari-
ables in binary model as well as time-event model, pro-
viding better understanding of predicted survival. The 
results of this paper indicated that the models built by 
ML incorporated fewer predictors and performed no 
worse than traditional Cox regression. As a substitute of 
Cox regression, the Logistic algorithm combined with 
SHAP values performed superiority in clinical applica-
tions. However, it is important to note that the predictive 

efficacy of Cox regression in predicting the survival of 
ATC patients were comparable with ML algorithms, sug-
gesting that the superiority of ML was not always seen 
but was seen only in situations when the conventional 
methods meet their limits.

Deep learning is a branch of machine learning, which 
requires less data engineering and achieves more accu-
rate prediction when processing a large amount of data. 
Deep learning has been applied in many fields of medi-
cal practice, including image diagnosis, digital pathology, 
cancer prognosis, etc [29]. Previous studies have shown 
that the performance of deep learning model in predict-
ing survival analysis is better than that of traditional Cox 

Table 2 Summary of model performance of C-index, Accuracy, Sensitivity, Specificity, Brier-score
Trainingset Testset
C-index C-index Accuracy Sensitivity Specificity Brier score

Classification Models
OS 6 month
Logistic 0.779 0.790 0.720 0.757 0.724 0.170
Random Forests 0.834 0.728 0.691 0.737 0.653 0.181

XGBoost 0.808 0.763 0.703 0.696 0.737 0.169

AdaBoost 0.788 0.788 0.699 0.739 0.726 0.238

OS 12 month
Logistic 0.794 0.811 0.728 0.829 0.677 0.117
Random Forests 0.886 0.736 0.679 0.756 0.659 0.131

XGBoost 0.819 0.767 0.682 0.660 0.778 0.126

AdaBoost 0.803 0.786 0.696 0.784 0.691 0.192

CSS 6 month
Logistic 0.775 0.775 0.700 0.770 0.679 0.179
Random Forests 0.857 0.700 0.648 0.672 0.689 0.204

XGBoost 0.794 0.743 0.679 0.724 0.677 0.185

AdaBoost 0.774 0.779 0.709 0.772 0.685 0.238

CSS 12 month
Logistic 0.760 0.768 0.721 0.735 0.704 0.127
Random Forests 0.910 0.662 0.638 0.646 0.639 0.174

XGBoost 0.790 0.711 0.688 0.705 0.653 0.157

AdaBoost 0.775 0.761 0.700 0.680 0.758 0.244

Time-to-Event Models
OS
Cox 0.709 0.713
Survival Tree 0.667 0.630

Survival SVM 0.700 0.651

Random Survival Forests 0.668 0.630

XGBoost 0.720 0.657

DeepSurv 0.945 0.658
CSS
Cox 0.710 0.712
SurvivalTree 0.670 0.628

Survival SVM 0.701 0.644

Random Survival Forests 0.670 0.628

XGBoost 0.709 0.662

DeepSurv 0.834 0.676
Abbreviations: C-index: concordance index; XGBoost: Extreme Gradient Boosting; AdaBoost: Adaptive Boosting; SVM: Support Vector Machine; OS: overall 
survival; CSS: cancer-specific survival
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regression model [30, 31]. We used the deep learning 
method, named DeepSurv, to predict the survival of ATC 
patients. The results show that the DeepSurv algorithm 
is better than Cox regression in the training set. How-
ever, no obvious advantages were seen in the validation 
set. It can be seen that deep learning is challenging in the 
application of cancer prognosis. The performance of the 
deep learning model depends on the amount of data [32]. 

When the amount of patient data is relatively small, sub 
optimal performance and overfitting problems are usu-
ally seen.

Cox regression results showed that Age, Families below 
poverty, AJCC T 8th, AJCC M 8th, tumor size, surgery, 
radiotherapy and chemotherapy were important fac-
tors in predicting OS and CSS, among which therapeu-
tic approaches were protective factors, including surgery, 

Fig. 4 The Logistic model based on the SHAP algorithm. (Note: (A) The attributes of the features predicting 6-month OS; Y-axis represents features. x-axis 
represents the degree of influence on the outcome, Each dot represents a sample, the red dots represent the high risk value and the blue dots represent 
the low risk value。(B) Ranking of feature importance predicting 6-month OS; (C) The attributes of the features predicting 12-month OS; (D) Ranking 
of feature importance predicting 12-month OS; (E) The attributes of the features predicting 6-month CSS; (F) Ranking of feature importance predicting 
6-month CSS; (G) The attributes of the features predicting 12-month CSS; (H) Ranking of feature importance predicting 12-month CSS)
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radiotherapy and chemotherapy. Importantly, older age, 
higher poverty rate, larger tumor size and more advanced 
stage suggested a poorer prognosis. Similarly, in the 
Logistic algorithm analysis, AJCC T 8th and AJCC M 8th 
were included as important factors in the survival predic-
tion of ATC patients, which was consistent with previous 
research [33, 34]. By evaluating SHAP values, we found 
that AJCC M 8th was the most important predictive fac-
tor, which is consistent with previous study [13]. In our 
study, the AJCC.N.8th edition staging was not included 
into predictive factors. However, regional lymph node 
surgery was analyzed in the prediction of 6-OS and 
6-CSS when using Logistic algorithm. In addition, stud-
ies have shown that log odds of positive LN (LODDS) 
showed better predictive performance than AJCC N 
states [35]. Radiotherapy and surgery, as compared with 
control group, improved patient outcomes, being consis-
tent with the findings of Gui et al. [13]. In addition, we 
found that chemotherapy was also a protective factor for 
the prognosis of ATC patients.

This study has several limitations. First, this is a retro-
spective study with small sample size, which may cause 
bias. More large-scale prospective studies are needed to 
validate the efficacy of our models. Second, although we 
included more predictors than previous studies, such as 
economy, education and marriage, our study did not ana-
lyze the impact of immunotherapy and targeted therapy, 
which were highlighted in recent progress of ATC treat-
ments [23]. Finally, we did not perform performance 
comparisons with previously established predictive 
models because of differences in analyzing variables. In 
the future, we will try to build a deep learning model to 
predict the prognosis of ATC and conduct hierarchical 
researches, by analyzing more data and information.

Conclusion
In conclusion, our study compared the application of Cox 
regression and ML algorithms in survival prediction of 
ATC patients. The results of our study showed that Cox 
regression and Logistic algorithm combined with SHAP 
value had a good predictive effect in survival prediction 
of anaplastic thyroid cancer. However, due to the small 
sample size and lack of external validation, our results 
need to be viewed more cautiously.
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