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Abstract 

Background Animal model studies suggest that change in the members of the suppressor of the cytokine signaling 
(SOCS) family (mainly SOCS1 and SOCS3) is linked to the pathogenesis of obesity‑related metabolic disorders. Moreo‑
ver, epigenetic modification is involved in the transcriptional regulation of the SOCS gene family. Here, we aimed to 
evaluate the mRNA expression as well as gene promoter methylation of SOCS1 and SOCS3 in subcutaneous adipose 
tissue (SAT) from obese women compared to normal‑weight subjects. We also intend to identify the possible associa‑
tion of SOCS1 and SOCS3 transcript levels with metabolic parameters in the context of obesity.

Methods This study was conducted on women with obesity (n = 24) [body mass index (BMI) ≥ 30 kg/m 2] and 
women with normal‑weight (n = 22) (BMI < 25 kg/m 2). Transcript levels of SOCS1 and SOCS3 were evaluated by real‑
time PCR in SAT from all participants. After bisulfite treatment of DNA, methylation‑specific PCR was used to assess the 
putative methylation of 10 CpG sites in the promoter of SOCS1 and 13 CpG sites in SOCS3 in SAT from women with 
obesity and normal weight.

Results It was found that unlike SOCS3, which disclosed an elevating expression pattern, the expression level of 
SOCS1 was lower in the women with obesity as compared with their non‐obese counterparts (P‑value = 0.03 for 
SOCS1 transcript level and P‑value = 0.011 for SOCS3 transcript level). As for the analysis of promoter methylation, it 
was found that SOCS1 and SOCS3 methylation were not significantly different between the individuals with obesity 
and normal weight (P‑value = 0.45 and P‑value = 0.89). Correlation analysis indicated that the transcript level of SOCS1 
mRNA expression had an inverse correlation with BMI, hs‑CRP levels, HOMA‑IR, and insulin levels. However, the SOCS3 
transcript level showed a positive correlation with BMI, waist‑to‑height ratio, waist circumference, hip circumfer‑
ence, hs‑CRP, HOMA‑IR, insulin, fasting blood glucose, and total cholesterol. Interestingly, HOMA‑IR is the predictor 
of the transcript level of SOCS1 (β =  − 0.448, P‑value = 0.003) and SOCS3 (β = 0.465, P‑value = 0.002) in SAT of all 
participants.
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Conclusions Our findings point to alterations of SOCS1 and SOCS3 transcript levels, but not promoter methylation 
levels in subcutaneous adipose tissues from women with obesity. Moreover, mRNA expression of SOCS1 and SOCS3 in 
SAT was associated with known obesity indices, insulin resistance, and hs‑CRP, suggesting the contribution of SOCS1 
and SOCS3 in the pathogenesis of obesity‑related metabolic abnormalities. However, further studies are required to 
establish this concept.

Keywords SOCS1, SOCS3, Adipose tissue, Obesity, Insulin resistance, Expresseion, Methylation

Introduction
Human obesity, one of the serious health problems is 
becoming an epidemic all around the world [1, 2]. Obe-
sity is a risk factor for some chronic disorders such as 
type 2 diabetes mellitus, cardiovascular diseases, and 
certain malignant conditions [1, 3]. Obesity is a compli-
cated multifactorial condition that results from an imbal-
ance between calorie intake and calorie consumption [4]. 
As an animate endocrine organ,  adipose  tissue  has  an 
important role in energy metabolism and regulating 
endocrine, metabolic, and immune responses [5]. Two 
main types of adipose tissue including subcutaneous 
adipose tissue (SAT) and visceral adipose tissue (VAT) 
have different cellular, molecular and clinical specifica-
tions. There is also evidence that SAT contributes more 
than VAT to the proinflammatory milieu linked to severe 
obesity [6] One of the most important outcomes of obe-
sity is insulin resistance which is highly associated with 
the overproduction of pro-inflammatory cytokines pro-
duced by adipose tissue and results in chronic inflamma-
tion [7–9]. Over the years the members of the suppressor 
of cytokine signaling (SOCS) family (mainly SOCS1 and 
SOCS3) have received the lion’s share of the attention as 
key players in the development of insulin resistance.

SOCS family consists of eight members: SOCS 1–7 
and cytokine-inducible SH2 protein (Cis) [10]. They are 
known as the regulator of cytokine signaling in different 
tissues in a cell-type-specific manner [11]. Each of which 
contains an amino-terminus end with limited homology, 
a central SH2 domain, and a conserved carboxyl-termi-
nus domain (SOCS box). SOCS proteins can negatively 
modulate the signaling of cytokine receptors in several 
different ways. First, inhibiting Janus kinases directly. 
Second, compete for signaling molecules containing 
SH2-domains such as signal transducers and activators 
of transcription (STATs) for accessing receptor binding 
sites. Third, targeting receptor complex and related sign-
aling proteins for proteasomal degradation by SOCS box 
[12]. Among SOCS family members SOCS1 and SOCS3 
have received special attention in the pathogenesis of dif-
ferent disorders like immune disorders, tumorigenesis, 
type 2 diabetes, and obesity [13].

Increasing data from cell line studies and animal mod-
els point to the possible role of SOCS in the pathogenesis 

of obesity and related metabolic abnormalities. Lipopol-
ysaccharide (LPS)-induced endotoxemia provides an 
experimental tool to assess the relationship between the 
effects of increased cytokine levels and insulin resist-
ance. Ueki et al. found an increase in SOCS1, and SOCS3 
proteins, in the liver, muscle, and, to a lesser extent, fat 
endotoxin-induced insulin resistance animal model. 
Moreover, they found that SOCS1 and SOCS3 inhibit 
insulin signaling and cause insulin resistance by inhib-
iting insulin receptor substrate 1 (IRS1) and IRS2 bind-
ing to the insulin receptor in cultured L6 myotubes 
and 3T3L1 adipocytes [14]. Also, there is evidence that 
SOCS3 deficiency in proopiomelanocortin neurons, as 
an important regulator of appetite and blood glucose, 
influences body weight regulation and energy balance in 
the setting of a control diet and a high-fat diet [15]. Fur-
thermore, SOCS3 suppression prevented resistin, a well-
known inflammatory adipocytokine, from antagonizing 
insulin action in 3T3-L1 adipocytes [16]. Moreover, over-
expression of SOCS1 attenuates insulin-induced glyco-
gen synthesis in myotubes and inhibits glucose uptake in 
3T3L1 adipocytes [14].

Moreover, a trend of increase in circulating leptin levels 
was found in transgenic mice with muscle SOCS3 over-
expression. This situation was similar to the scenario of 
insulin resistance due to impaired insulin signaling in 
insulin-sensitive tissue. Mechanistically, muscle SOCS3 
overexpression in mice suppressed leptin-regulated genes 
involved in fatty acid oxidation and mitochondrial func-
tion and inhibited the effect of leptin on phosphorylation 
of alpha2 AMP-activated protein kinase (α2AMPK) and 
its downstream target, acetyl-CoA carboxylase (ACC). 
This data suggests that increased SOCS3 protein is suf-
ficient to mediate insulin and leptin resistance in muscle 
in the context of obesity [17]. In some investigations, it is 
shown that increased BMI, body weight gain, and obesity 
are related to increased SOCS3 expression [17–19]. Also, 
it has been reported that SOCS1 expression is elevated 
in insulin-sensitive tissues in obese insulin-resistant db/
db  mice. Moreover, increased SOCS1 levels in cultured 
muscle cells and adipocytes can lead to insulin resistance 
via the inhibition of tyrosine phosphorylation of insulin 
receptor substrate proteins and subsequent downstream 
signaling [14]. In another study, adenoviral-mediated 
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expression of SOCS1 in mouse liver blocked insulin sign-
aling by ubiquitin-mediated degradation of insulin recep-
tor substrates 1 and 2, resulting in insulin resistance [20]. 
Furthermore, SOCS1 gene promoter mutation is related 
to obesity and insulin resistance [21].

Recently, epigenetic alteration has been considered 
a process that may explain the etiology of complex dis-
orders like obesity which is a result of the interaction 
between genetics and environmental conditions [22]. By 
definition, epigenetic regulation is heritable changes in a 
chromosome that affect the phenotype and gene expres-
sion with no effect on the DNA sequence [23]. One of the 
key types of epigenetic modification is DNA methylation 
which consists of adding one methyl group to cytosine 
at CpG islands and usually leads to suppression of gene 
expression [24]. Despite  tremendous efforts  to identify 
epigenetic contributions to obesity pathomechanism, 
there is still a great deal of uncertainty in this regard.

New emerging pieces of evidence suggest that aberrant 
DNA methylation is related to body weight and obesity 
[25–27]. The methylation status of SOCS1 and SOCS3 
are evaluated in different cancers e.g., ovarian and breast 
carcinomas, Barrett’s adenocarcinoma, gastrointestinal 
cancers like hepatocellular carcinoma, pancreatic carci-
noma, human lung, and head and neck cancer [28, 29]. 
To the best of the authors’ knowledge, no data were avail-
able on the alteration in both expression levels and meth-
ylation status of the gene promoter of SOCS1 and SOCS3 
in human obesity. Here, we aimed to evaluate the mRNA 
expression as well as gene promoter methylation of 
SOCS1 and SOCS3 in SAT from obese women com-
pared to normal-weight subjects. The study also intended 
to assess the possible association of SOCS1 and SOCS3 
transcript levels with metabolic parameters in the con-
text of obesity.

Methods and patients
Study participants
This case–control study protocol was approved by the 
ethics committee of Shahid Beheshti University of Medi-
cal Sciences (IR.SBMU.RETECH.REC.1396.961) in com-
pliance with the principles of the Declaration of Helsinki. 
All methods were performed under the relevant guide-
lines and regulations.

Written informed  consent was obtained from 
each individual before participation. The case group 
was selected among women with obesity (n = 22) 
[BMI ≥ 30 kg/m2] who were candidates for bariatric sur-
gery (vertical sleeve gastrectomy and Roux-en-Y gastric 
bypass) at the bariatric surgery center of Erfan hospi-
tal. The control group was selected from normal-weight 
women(n = 24) [BMI < 25  kg/m2] who were under elec-
tive cholecystectomy or inguinal hernia at the center of 

advanced laparoscopic surgeries at Sina and Loqman 
Hakim hospitals, Tehran, Iran.

All participants were aged from 20 to 53 years and were 
selected from Iranian ethnic. The exclusion criteria were 
as follows: women with post-menopause, diabetes (Type 
1 and/or 2), cardiovascular disease, liver disease, acute 
and chronic infectious diseases, autoimmune disease, 
malignancy, pregnancy, and taking drugs that can affect 
the metabolic parameters (e.g. metformin and statin). It 
should be noted that the participants were neither his-
tory of surgery or hospital admission during the last 
6 months, nor smoking at the time of the study. However, 
one individual in women with obesity and two in the 
normal-weight group were taking levothyroxine and anti-
hypertensive drugs at the time of the study, respectively. 
The anthropometric characteristics of all participants 
including weight, height, waist circumference (WC), 
and hip circumference were evaluated. Body mass index 
(BMI) was measured by dividing body weight in kilo-
grams by height in meters squared (BMI = kg/m2). WC 
was assessed at the approximate midpoint between the 
lower margin of the last palpable rib and the top of the 
iliac crest  using a flexible inch tape according to WHO 
guidelines. Hip circumference was measured at the level 
of the greatest protrusion of the buttocks while each 
individual stood erect with the feet together. Waist-to-
hip ratio (WHR) and waist-to-height ratio(WHtR) were 
calculated by dividing WC in cm by hip and by height, 
respectively. The Systolic and diastolic blood pressure of 
participants was done three times after at least 15  min 
rest in a sitting position using a manual sphygmomanom-
eter and the average of them was recorded.

Blood collection and biochemical measurements
Venous blood samples of participants were collected 
after overnight fasting on the day of surgery as described 
previously [30, 31]. All blood samples were centrifuged 
at 2,000 g for 10 min at 4  °C. The serum was separated 
and transferred to the Eppendorf tube and immediately 
stored at -80 °C until the following analyses. Serum lev-
els of fasting blood glucose (FBG), uric acid, urea, cre-
atinine, high-density lipoprotein cholesterol (HDL-C), 
low-density lipoprotein cholesterol (LDL-C), triglyceride 
(TG), total cholesterol (TC), aspartate aminotransferase 
(AST), and alanine aminotransferase (ALT) were meas-
ured using commercial kits (Pars Azmoon, Tehran, Iran) 
on the auto analyzer (Roche, Cobas 6000 e501). Further-
more, high-sensitivity C-reactive protein (hs-CRP) was 
evaluated by an immunoturbidometric method using 
the Roche Integra analyzer. The fasting blood insulin was 
assessed using the ECL method by Cobas 6000 e601 auto 
analyzer. For the assessment of insulin resistance homeo-
stasis model assessment of insulin resistance (HOMA-IR) 
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was estimated using the following equation: fasting blood 
glucose (mg/dL) × fasting blood insulin (μU/mL) / 405 
[30, 31].

Adipose tissue samples
SAT specimens were obtained during the operation 
from the normal weight control group and obese partici-
pants. Briefly, subcutaneous fat (approximately 0.5 g) was 
obtained by cutting a small aperture under the skin using 
a scalpel blade. Adipose tissue biopsies were washed in 
sterile and cold phosphate-buffered saline, cut off into 
small pieces, and snap-frozen in liquid nitrogen. Then, 
the samples were kept at -80  °C until DNA and RNA 
extraction.

CpG island prediction and promoter analysis
Using the RefSeq sequence of SOCS1 and SOCS3, all 
potential transcription start sites (TSSs) were identified. 
Then, 2,000 bp, including 1,000 bp extending from the 5’ 
upstream region to 1,000  bp downstream of each TSS, 
was used as input to the MethPrimer 2.0 online tool [32] 
for the prediction of CpG islands. The promoter posi-
tion of genes was obtained from the eukaryotic promoter 
database (EPD) [33]. Looking for differences in methyla-
tion levels, 10 CpG sites in the promoter of SOCS1 and 
13 in SOCS3 were analyzed. We used MSP primers from 
previous studies for this purpose [34].

Distribution of CpG islands in selected regions of SOCS1 
and SOCS3 genes
Using MethPrimer 2.0 online tool, 5 CpG islands around 
TSS-1 (NM_003955.5) and TSS-2 (NM_001378932.1), 
and 3 CpG islands around TSS-3 (NM_001378933.1) 
were predicted. In the case of SOCS1 (NM_003745.2), 
the number of predicted CpG islands was 4. Bioinfor-
matic analysis of SOCS1 and SOCS3 regulatory regions 
was depicted in Fig. 1.

Bisulfite treatment of DNA and methylation‑specific 
polymerase chain reaction
Genomic DNA was extracted from SAT biopsy sam-
ples by The QIAamp Fast DNA Tissue Kit (QIAGEN). 
DNA bisulfite modification was performed based 
on the conversion of all the unmethylated cytosines 
to uracil while the methylated cytosines will be con-
served using the EpiTect Fast Bisulfite Conversion kit 
(QIAGEN) following the manufacturer’s procedure. 
The modified DNA was used as a template for meth-
ylation-specific polymerase chain reaction (PCR) to 
demonstrate the promoter methylation of the selected 
CpG dinucleotides in the SOCS1 and SOCS3 regula-
tory regions. The assay was based on quantitative 
real-time PCR (RT-PCR) using specific primers set 
for methylated and unmethylated DNA sequences (M 
primers and U primers, respectively). Therefore, two 
PCRs were performed for each sample simultaneously 

Fig. 1 Bioinformatic analysis of SOCS1 and SOCS3 regulatory regions. The regulatory regions (grey) and CpG islands (light blue) are shown relative 
to the transcription start sites (+ 1). SOCS1, suppressor of cytokine signaling 1; SOCS3, suppressor of cytokine signaling 3
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using the M and U primer pairs. The methylated and 
unmethylated status of promoters was identified by 
successful amplification from the M primers and U 
primers. It should be noted that M and U primers had 
at least one CpG site at the 3’ end to maximal discrimi-
nation between methylated and unmethylated alleles. 
Primer sequences are illustrated in Table 1.

The methylated level of DNA is expressed as the esti-
mated amount of methylated DNA to the unmethyl-
ated DNA levels ratio calculated for each sample using 
the fluorescence threshold cycle. The efficiency for 
each single sample tube was estimated using the slope 
of the exponential phase as described previously [35]. 
Moreover, controls for unmethylated DNA and fully 
methylated DNA yielded 0% and 100% DNA methyla-
tion patterns used.

RNA extraction and real‑time PCR for quantitative 
assessment of mRNA expression
Frozen samples were homogenized in liquid nitrogen 
and total RNA was extracted from SAT by Hybrid-R™ 
kit (GeneAll). The purity and integrity of RNA were 
assessed by 260 nm to 280 nm ratio and gel electropho-
resis, respectively. The complementary DNA (cDNA) 
synthesis was performed on 1000 ng of DNase-treated 
RNA using the Thermo  Scientific RevertAid First 
Strand  cDNA Synthesis kit. Quantitative Real-time 
PCR was accomplished by BioFACT™ 2X Real-Time 
PCR Master Mix (For SYBR Green I) in a Step-One-
Plus TM real-time (ABI Applied Biosystems). β-actin 
was used as the reference gene. Primer sequences are 
illustrated in Table  1. Each sample was normalized 
to the corresponding value of the mean of the refer-
ence gene. For each sample, the difference in Ct values 
(ΔCt) between the target gene and the reference gene 
was calculated. The efficiency (E) of amplification for 
all target genes and reference genes ranged from 95 to 
100% in all assays similar. To perform relative quantifi-
cation  2−ΔΔCt was applied.

Statistical analysis
The normality of data was checked by the Shapiro–
Wilk test and visually. Laboratory and anthropometric 
parameters with normal distribution are presented as 
mean ± standard deviation (SD), and data with skewed 
distribution were presented as median (interquartile 
ranges). The data comparison between cases and con-
trols was performed with an independent samples t-test 
or Mann–Whitney U test, as appropriate. To remove the 
effects of potential confounders, an analysis of covari-
ance (ANCOVA) was carried out. Log-transformation 
was employed for variables with non-normal distribution 
when being normally distributed outcomes were a nec-
essary assumption to perform analysis. Correlation coef-
ficients were calculated using the two-tailed Spearman’s 
correlation analysis. A stepwise multivariable linear 
regression analysis was performed to ascertain the best 
set of predictors for SOCS1 and SOCS3 gene expression. 
P-value < 0.05 was considered statistically significant. All 
data analysis was performed using SPSS 20 (SPSS, Chi-
cago, IL, USA).

Results
Clinical and laboratory characteristics of the women 
with normal weight and obesity are shown in Table  2. 
The mean age of cases and controls was 37.68 ± 9.07 and 
34.92 ± 6.61 years, respectively (P-value = 0.241). Obesity 
indices including BMI, WC, hip, and WHtR were signifi-
cantly higher in women with obesity in comparison to 
the controls. Furthermore, significantly higher circulating 
insulin levels, hs-CRP, and HbA1C, as well as HOMA-IR 
values, were observed in women with obesity Also, the 
obese group showed higher levels of creatinine, TC, and 
LDL-C compared to the normal-weight controls.

SOCS1 and SOCS3 mRNA expression and promoter 
methylation in women with obesity and normal‑weight
The gene expression of SOCS1 and SOCS3 in adipose 
tissue of normal-weight and obese women is dem-
onstrated in Fig.  2. In detail, SOCS1 gene expression 

Table 1 Forward and reverse primers used for real‑time PCR

M Methylated, U unmethylated

Primer Forward sequence Reverse sequence

SOCS1 TTT TCG CCC TTA GCG  TGA A CAT CCA GGT GAA AGC GGC 

SOCS3 GTC CCC CCA GAA GAG  CCT ATT A TTG ACG GTC TTC CGA CAG AGA T

SOCS1M GAG TAT TCG CGT GTA TTT TTAGG CGA CAC AAC TCC TAC AAC GACCG 

SOCS1U TGA GTA TTT GTG TGT ATT TTT AGG CAA CAC AAC TCC TAC AAC AACCA 

SOCS3M GGA GAT TTT AGG TTT TCG GAA TAT TTC CCC CCG AAA CTA CCT AAA CGCCG 

SOCS3U GTT GGA GAT TTT AGG TTT TTG GAA TAT TTT AAA CCC CCA AAA CTA CCT AAA CAC CA

Β‑actin TCC TTC CTG GGC ATG GAG T ACT GTG TTG GCG TAC AGG TC
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Table 2 The anthropometric, clinical, and metabolic characterizations of all participants

Continuous variables with normal and non-normal distribution were described as the mean ± SD and median (IQR), respectively

BMI Body mass index, WC Waist circumference, HC Hip circumference, WHR Waist-to-hip ratio, WHtR Waist to Height Ratio, SBP Systolic blood pressure, DBP Diastolic 
blood pressure, FBG Fasting blood glucose, TG Triglycerides, TC Total cholesterol, HDL-C High-density lipoprotein cholesterol, LDL-C Low-density lipoprotein 
cholesterol, AST Aspartate aminotransferase, ALT Alanine aminotransferase, hs-CRP High-sensitivity C-reactive Protein, AMH Anti-mullerian hormone, HOMA-IR 
Homeostasis model assessment of insulin resistance, HbA1c Hemoglobin A1C
a  The p-value was determined with an independent samples t-test
b  The p-value was determined by Mann–Whitney U test

Variables Normal‑weight subjects (n = 22) Obese subjects (n = 24) p‑value

Age (years) 37.68 ± 9.07 34.92 ± 6.61 0.241a

BMI (kg/m2) 23.31(22.81–24.34) 42.59(36.36–46.12) 0.000b

WC (cm) 85.00(82.25–87.25) 114.00(111.25–119.50) 0.000b

HC (cm) 95.00(90.00–97.00) 128.00(120.25–133.75) 0.000b

WHR,‑ 0.89(0.86–0.93) 0.92(0.87–0.94) 0.202b

WHtR,‑ 0.51 ± 0.04 0.72 ± 0.06 0.000a

SBP (mmHg) 120.00(110.00–120.00) 120.00(111.00–130.00) 0.266b

DBP (mmHg) 80.00(70.00–80.00) 80.00(70.00–90.00) 0.472b

FBG(mg/dL) 85.21 ± 7.29 89.00 ± 8.71 0.119 a

Urea (mg/dL) 22.60 ± 7.54 26.53 ± 6.08 0.0573a

Creatinin(mg/dL) 0.58 ± 0.16 0.73 ± 0.11 0.001a

TG(mg/dL) 91.55(66.43–140.15) 105.95(66.55–152.35) 0.965b

TC(mg/dL) 147.40 ± 37.61 180.40 ± 25.48 0.001a

HDL‑C(mg/dL) 44.02 ± 7.33 44.95 ± 72.87 0.666a

LDL‑C(mg/dL) 88.70 ± 28.93 113.41 ± 19.65 0.001a

AST(mg/dL) 16.70(11.70–20.95) 20.65(16.20–23.95) 0.079b

ALT(mg/dL) 12.55(11.08–20.25) 20.30(15.35–30.20) 0.036b

hs.CRP(mg/dL) 1.80(0.98–2.56) 5.70(2.91–11.20) 0.000b

Insulin (µU/mL) 8.02 ± 3.57 19.4 ± 4.70 0.000a

HOMA‑IR,‑ 1.69(1.03–2.06) 3.92(3.44–5.22) 0.000b

HbA1c,‑ 5.20(4.90–5.40) 5.50(5.13–5.68) 0.003b

Fig. 2 Expression of SOCS1 (a) and SOCS3 (b) genes in the subcutaneous adipose tissues (SAT) of women with obesity (O) and ones with normal 
weight (NW). Results, normalized to the corresponding value of housekeeping genes (β‑actin), are shown as median (interquartile). Fold changes 
in gene expression of women with obesity relative to the controls were calculated by the 2‑ΔΔCt method. The p‑value was determined by Mann–
Whitney U test
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was significantly lower in obese participants than in 
the normal-weight control group (P-value = 0.03, and 
Z-score = -2.167). While SOCS3 gene expression was 
markedly higher in the obese group than in control indi-
viduals (P-value = 0.011 and Z-score = -2.557). ANCOVA 
was performed to remove the age and drug effect on 
the SOCS1 and SOCS3 gene expression. The data 
revealed that SOCS1 and SOCS3 expression alteration 
was independent of age and drugs (P-value = 0.003 and 
P-value = 0.01, respectively).

As for the analysis of promoter methylation, it was 
found that SOCS1 (P-value = 0.45 and Z-score = -0.78) 
and SOCS3 methylation (P-value = 0.89 and 
Z-score = -0.156) were not significantly different between 
the individuals with obesity and normal-weight (Fig. 3).

Correlation of the SOCS1 and SOCS3 transcript levels 
with anthropometric and biochemical characteristics
Bivariate correlation analysis of SOCS1 and SOCS3 
mRNA levels with anthropometric and laboratory 
characteristics in the whole population is demon-
strated in Table  3. As demonstrated in Table  3, SOCS1 
mRNA expression is inversely correlated with BMI 
(r = -0.334; P-value = 0.031), hs-CRP levels (r = -0.347; 
P-value = 0.024), HOMA-IR (r = -0.337; P-value = 0.029), 
and insulin levels (r = -0.367; P-value = 0.014). Moreover, 
the correlation between SOCS1 expression and waist-to-
height ratio (r = -0.302; P-value = 0.052) as adiposity indi-
ces was marginally significant.

A stepwise linear regression analysis was performed 
to ascertain the best set of predictors for SOCS1 gene 
expression. Our results showed that HOMA-IR is the 

Fig. 3 Methylation status of regulatory regions of SOCS1 (a) and SOCS3 (b) genes in the subcutaneous adipose tissues (SAT) of women with 
obesity (O) and ones with normal weight (NW). The methylated level of DNA is expressed as the estimated amount of methylated DNA to the 
unmethylated DNA levels ratio calculated for each sample using the fluorescence threshold cycle. The results were s expressed as fold change 
relative to the controls. Results were shown as median (interquartile ranges). The p‑value was determined by Mann–Whitney U test

Table 3 The correlation of gene expression of SOCS1 and SOCS3  
with anthropometric, and metabolic profiles in whole population 
study

BMI Body mass index, WC Waist circumference, HC Hip circumference, WHR 
Waist-to-hip ratio, WHtR Waist to Height Ratio, SBP Systolic blood pressure, DBP 
Diastolic blood pressure, FBG Fasting blood glucose, TG Triglycerides, TC Total 
cholesterol, HDL-C High-density lipoprotein cholesterol, LDL-C Low-density 
lipoprotein cholesterol, hs-CRP High-sensitivity C-reactive Protein, HOMA-IR 
Homeostasis model assessment of insulin resistance

SOCS1 mRNA expression SOCS3 mRNA 
expression

Spearman 
coefficient (r)

p‑value Spearman 
coefficient (r)

p‑value

Age (years) ‑0.007 0.963 ‑0.266 0.089

BMI (kg/m2) ‑0.334 0.031 0.340 0.027

WC (cm) ‑0.295 0.058 0.336 0.030

HC (cm) ‑0.0276 0.077 0.374 0.015

WHR,‑ 0.053 0.740 0.022 0.891

WHtR,‑ ‑0.302 0.052 0.392 0.010

SBP (mmHg) ‑0.133 0.401 ‑0.100 0.530

DBP (mmHg) 0.279 0.073 0.025 0.887

FBG (mg/dL) ‑0.073 0.646 0.392 0.010

TG (mg/dL) 0.077 0.627 0.120 0.450

TC (mg/dL) ‑0.106 0.504 0.336 0.029

HDL‑C (mg/dL) ‑0.079 0.617 ‑0.166 0.292

LDL‑C (mg/dL) ‑0.199 0.206 0.304 0.050

hs.CRP (mg/dL) ‑0.347 0.024 0.370 0.016

Insulin (µU/mL) ‑0.367 0.014 0.361 0.019

HOMA‑IR,‑ ‑0.337 0.029 0.401 0.008
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predictor of SOCS1 transcript level in SAT of all partici-
pants (β =  − 0.448, P-value = 0.003).

As for SOCS3 mRNA expression, we found that the 
transcript level of this member of the SOCS family had 
a significant positive correlation with BMI (r = 0.340; 
P-value = 0.027), WHtR (r = 392; P-value = 0.010), waist 
circumference (r = 0.336; P-value = 0.030), hip circum-
ference (r = 0.374; P-value = 0.015), hs-CRP (r = 0.370; 
P-value = 0.016), HOMA-IR (r = 0.401; P-value = 0.008), 
insulin (r = 0.361; P-value = 0.019), FBG (r = 0.392, 
P-value = 0.010), and TC (r = 0.336; P-value = 0.029). 
Similar to SOCS1, HOMA-IR (β = 0.465, P-value = 0.002) 
was found to be the best predictor for SOCS3 mRNA 
expression in SAT of all participants following stepwise 
linear regression analysis.

Discussion
Obesity is related to chronic inflammation and insu-
lin resistance development. One of the plausible pro-
teins involved is the SOCS family, especially SOCS1 and 
SOCS3 [9]. Data from in vitro studies and animal models 
point to the possible role of SOCS1 and SOCS3 in under-
lying mechanisms pertinent to obesity and associated 
metabolic disorders. The epigenetic regulation of tran-
scriptional control by DNA methylation has gained  an 
increasing interest in our understanding of obesity path-
omechanism. Nowadays, enormous efforts are being 
made to investigate whether epigenetic factors occur-
ring in the adipose tissue, like altered DNA methylation 
of promoter-associated CpG dinucleotides, are linked to 
metabolic abnormalities in the context of obesity-related 
disorders. Despite ample human studies on the alteration 
in SOCS1 and SOCS3 promoter methylation status and 
gene expression in various pathological conditions, no 
study has analyzed the alteration in SOCS1 and SOCS3 
mRNA expression and their promoter DNA methylation 
in SAT of obese women compared to the non-obese con-
trol group.

In the present study, we observed that unlike SOCS1, 
which disclosed a decreased expression pattern, the tran-
script level of SOCS3 was higher in the obese group in 
comparison with the normal-weight one. Liver-specific 
SOCS3 knockout mice fed an HFD  had elevated hypo-
thalamic SOCS3, increased food intake, reduced energy 
expenditure, and increased lipogenic capacity of the liver 
which leads to steatosis, inflammation, and metabolic 
deterioration. There is evidence that systemic inflamma-
tion can lead to leptin resistance. Hence, elevated hypo-
thalamic SOCS3 can contribute to leptin resistance in 
an HFD condition. SOCS3 inhibits insulin signaling and 
leads to the development of insulin resistance. Follow-
ing binding to the insulin receptor, it prevents IRS asso-
ciation with insulin receptor substrate-1 (IRS1) and IRS2. 

Moreover, SOCS3 may also target IRS proteins for pro-
teasomal degradation [9]. In line with our data, increased 
basal transcript levels of SOCS3 but not SOCS1 were 
found in peripheral blood mononuclear cells of indi-
viduals with obesity as compared with their non-obese 
counterparts. However, the mRNA level of SOCS3 and 
SOCS1 was lower in peripheral blood mononuclear cells 
from  obese volunteers after stimulation with Toll-like 
receptor ligands [5]. In parallel, SOCS3 mRNA expres-
sion was significantly enhanced in type 2 diabetic patient 
skeletal muscle in comparison to the control subjects and 
is associated with reduced insulin-stimulated glucose 
uptake. Moreover, SOCS3 upregulation was found to be 
associated with insulin resistance and hyperglycemia in 
patients with diabetes [36].

Although the current study cannot address the under-
lying mechanism regarding the role of SOCS1 and 
SOCS3 in obesity and associated metabolic dysfunction, 
the possible mechanism can be derived from in vitro and 
murine model surveys.

Overexpression of SOCS3 in adipocytes from a trans-
genic mouse model (aP2- SOCS3 mouse) causes decreas-
ing IRS1 protein levels and subsequent IRS1 and -2 
phosphorylation, diminishing p85 binding to IRS1, and 
leads to decreased glucose uptake stimulated by insulin 
in adipocytes [7]. Moreover, SOCS3 deficiency enhances 
the phosphorylation of IRS1 and -2 stimulated by insulin 
and increases phosphatidylinositol 3 kinase (PI3K) activ-
ity, causes to increased insulin-stimulated glucose uptake 
in adipocytes [18]. There is also evidence that SOCS3-
mediated insulin resistance is involved in the upregula-
tion of mediators (e.g. tumor necrosis factor-α (TNF-α), 
Interleukin 6 (IL6)) signaling pathways. Additionally, the 
lack of SOCS3 limits the inhibitory effects of TNF-α on 
insulin signaling in adipocytes. Moreover, inhibiting 
SOCS3 production in adipose tissue of female mice can 
ameliorate whole-body insulin sensitivity in obesity [19].

In agreement with the above-mentioned data, SOCS3 
mRNA expression in SAT showed a positive correlation 
with known obesity indices such as HOMA-IR, adiposity 
indices (e.g. BMI, WC, hip circumference), and hs-CRP 
(well-known inflammatory mediators). Hence, it can be 
speculated that increased expression of SOCS3 in adi-
pose tissue from individuals with obesity can lead to met-
abolic abnormalities pertinent to obesity. However, the 
possible stimulatory role of insulin resistance, hyperin-
sulinemia, and inflammation in the induction of SOCS3 
expression cannot be ignored. To support this notion, 
several hormones and cytokines are known to cause 
insulin resistance including insulin, growth hormone 
(GH), angiotensin II (AT-II), TNF-α, IL6, and interferon-
gamma (IFN-γ) induce SOCS3 expression in cultured 
adipocytes [37, 38].
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As for SOCS1, there has been a growing  contro-
versy  in  the available literature. For instance, mac-
rophage deletion of SOCS1 augments sensitivity to 
lipopolysaccharide and palmitic acid resulting in sys-
temic inflammation and hepatic insulin resistance [39]. 
Emanuelli et al. showed that SOCS1 knockout mice 
receiving a high-fat diet had more than 50% weight 
gain, increased fat mass as well as hepatic lipid  con-
tent which was in parallel with increased inflamma-
tory macrophage in white adipose tissue. This study 
showed that despite the role of SOCS proteins in obe-
sity-related insulin resistance, SOCS1 deficiency alone 
may not be sufficient to alleviate high-fat diet-induced 
obesity and metabolic complications [40]. While SOC3 
deficiency can protect against metabolic abnormali-
ties and insulin resistance in HFD-induced obesity in 
mice [9]. Above mentioned data can partly support 
findings regarding the lower expression of SOCS1 in 
obese women in comparison with women with nor-
mal weight as well as an inverse correlation of SOCS1 
mRNA expression BMI, hs-CRP levels, HOMA-IR, and 
insulin levels. However, some studies showed inconsist-
ent results. For instance, Kawazoe et al. reported that 
SOCS1 overexpression reduces insulin-stimulated IRS1 
phosphorylation [41]. Also, SOCS1 has been shown 
to down-regulate insulin signaling and cause insulin 
resistance [42]. One study that was conducted on 30 
obese and 30 non-obese subjects demonstrated that 
basal expression of SOCS1 expressions in peripheral 
blood mononuclear cells (PBMCs) was similar in obese 
and non-obese groups [5].

Next, we investigated DNA methylation levels of the 
SOCS1 and SOCS3 promoter in SAT to explore if altered 
transcript levels of SOCS1 and SOCS3 promoter DNA 
methylation can be primarily ascribed to a transcrip-
tional regulation alteration.

Our results showed that neither  SOCS1 methylation 
level nor  SOCS3 methylation level alter in SAT women 
with obesity in comparison with ones with normal 
weight. Although methylation levels in regulatory regions 
of genes may differ between tissues, Andia et al. reported 
DNA methylation levels for  SOCS1  and  SOCS3  did 
not differ between microdissected gingival tissue from 
patients with and without a history of periodontitis [43].

Conversely, other studies showed that SOCS1 pro-
moter methylation is associated with several conditions 
such as liver [44] and gastric [45] cancer, multiple mye-
loma [46], myeloproliferative neoplasm [47], lymphoma 
[48], pancreatic ductal neoplasms [49] and development 
of in-stent restenosis (ISR) after percutaneous coronary 
intervention [50]. As for SOCS3 methylation, aberrant 
methylation in the promoter region of this gene has been 
observed in several human malignancies [34, 51, 52].

Although more detailed surveys are needed to explain 
our findings regarding no change in the methylation level 
of SOCS1 and SOCS3, several possible reasons should be 
considered in this regard as stated below:

WAT is composed of a heterogeneous cellular popula-
tion including mature adipocytes and other cells of the 
stromal vascular fraction such as preadipocytes, blood 
cells, endothelial cells, and a range of inflammatory 
leukocytes [53]. There is also evidence that epigenetic 
mechanisms contribute to the maintenance of site-
specific gene expression patterns in WAT. For instance, 
pre-adipocytes seem to retain an intrinsic epigenetic 
memory of their regional location in the body [54]. In 
the present study, we investigated the promoter methyla-
tion of SOCS1 and SOCS3 in WAT, however, the various 
cell type located in WAT has a discrete epigenetic pro-
file and subsequently different expression profile. Hence, 
an assessment of promoter methylation in isolated cells 
from WAT is suggested to gain more insights into the 
possible role of promoter methylation in the context of 
obesity.

Moreover, a wide range of epigenetic modifications is 
involved in the transcriptional regulation of the SOCS 
gene family [55–57]. Here, we only select promoter 
methylation as one of the possible mechanisms, there-
fore, investigation of other epigenetic regulatory mecha-
nisms is warranted in this regard.

Although the current study as a preliminary one 
opens an avenue to the involvement of SOCS1 and 
SOCS3 in the obesity etiology, however, several  limita-
tions  merit  comment. Firstly, the current study has a 
cross-sectional design which limits us to determine the 
causal relationship between the  variables. Secondly, 
assessment of gene expression and promoter methylation 
in visceral adipose tissue can provide valuable informa-
tion on the role of the SOCS gene family in the setting 
of obesity. Thirdly, more studies with a larger sample size 
are necessary to unravel the exact role of SOCS 1 and 
SOCS3 in obesity-associated metabolic abnormalities.

In summary, we provide evidence regarding alterations 
of SOCS1 and SOCS3 transcript levels, but not promoter 
methylation levels in subcutaneous adipose tissues in 
obese women. Moreover, mRNA expression of SOCS1 
and SOCS3 in SAT was associated with known obesity 
indices, insulin resistance, and hs-CRP, suggesting the 
contribution of SOCS1 and SOCS3 in the pathogenesis 
of obesity-related metabolic abnormalities. However, fur-
ther studies are required to establish this concept.
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