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Abstract 

IFN-γ is critical for both thyroid and ovarian function, while thyroxine, secreted from the thyroid gland, regulates the 
ovarian function via the hypothalamus-pituitary -ovary axis. However, the effect of thyroxine on INF-γ involved in the 
regulation of hypothalamic pituitary ovarian axis ovarian function is hitherto unknown. Therefore, we set up three 
groups including a sham-operated group, an experimental thyroidectomized group, and an experimental thyroidec-
tomized group treated with T4 to reveal the IFN-γ expression levels in the in the hypothalamus, pituitary gland, and 
ovary by immunohistochemical staining, RT-PCR, and Western blotting. IFN-γ-like immunoreactive-positive sub-
stances were visualized in the hypothalamus, pituitary gland, and ovary, which were located mainly in the cytoplasm 
of the hypothalamic neurons anterior pituitary cells, luteal cells, and theca cells in the ovary of hypothyroidism rats, 
respectively. RT-PCR and Western blotting showed that the rats in the experimental thyroidectomized group treated 
with T4 had significantly elevated expression of IFN-γ at both the mRNA and protein levels. Thyroxine affects the 
expression of IFN-γ in the thalamus-pituitary-ovarian axis, which may influence the secretion of IFN-γ to regulate ovar-
ian function during hypothyroidism. This work highlights the potential effect of thyroxine on the involvement of INF-γ 
in the modulation of the ovarian function in the hypothalamic-pituitary-ovarian axis.
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Introduction
Accumulating evidence has confirmed that the hypotha-
lamic-pituitary-thyroid axis plays a key role in female 
reproduction in humans and animals [1, 2]. The function 
of the thyroid gland, which is involved in the hypotha-
lamic-pituitary-thyroid axis, is critical for the develop-
ment and function of cardiovascular, nervous, immune, 
and reproductive systems [3–5]. Thyroxine participates 
in the metabolism of various substances through the 
hypothalamic-pituitary-ovarian axis and the regulation 
of the development of the gonads and the maintenance 

of normal female reproductive and endocrine functions 
[6]. In addition, thyroxine also regulates ovarian function 
and maintains the balance of reproductive endocrine by 
affecting the secretion of pituitary gonadotropin through 
the hypothalamus-pituitary-ovary axis [7, 8]. Altogether, 
thyroxine is involved in almost all stages of female repro-
ductive physiological activities.

Recent research revealed that the altered levels of,3’-
,5,5’tetra-iodothyronine (T4) and 3,3’,5-triiodothyronine 
(T3), the major circulating forms of thyroid hormones, 
can influence mammalian fertility [9]. Human ovarian 
granulosa cells, stromal cells and oocytes all expressed 
thyroxine receptor (TR) and thyroid-stimulating hor-
mone receptor (TSHR) [10, 11], suggesting that the ovary 
is also one of the target organs of thyroxines and thy-
roid-stimulating hormone (TSH). In the ovary, thyroid 
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hormones (THs), namely triiodothyronine (T3) and thy-
roxine (T4) act as modulators of several physiological 
processes such as steroidogenesis, oocyte formation and 
maturation of granulosa cells, follicular development and 
differentiation, and ovulation. T4 is the precursor of the 
active thyroid hormone T3, which further binds to the 
thyroid receptors (TRs) [9–12]. Moreover, thyroid dys-
functions have been associated with disturbed folliculo-
genesis, impaired ovulation and fertilization rate, and, in 
severe cases, complete ovarian failure or cancer [13–15].

Reportedly, the hypothalamus-pituitary-thyroid (HPT) 
axis is involved in many diseases or acute stress with 
elevated or reduced thyroid hormone levels, affecting 
the immune system in a variant fashion [16, 17]. Stud-
ies on thyroid gland pathogenesis of and other autoim-
mune diseases showed that some cytokines such as 
interleukin-1 (IL-1) and interferon-gamma (IFN-γ) have 
close correlation with hypothyroidism, the immune 

regulation induced by which maintains the autoimmune 
response and directly influences thyroid gland function 
[18]. Increased IFN-γ in turn stimulates Th1 chemokines 
release from thyrocytes, initiating and perpetuating the 
autoimmune process in patients with hyperthyroidism 
[19]. Therefore, IFN-γ may be a humoral mediator in 
the pathogenesis of hypothyroidism in vivo. In addition, 
IFN-γ seems to play an important role in the tissue repair 
of the mammalian reproductive system. IFN-γ regulates 
ovarian function in mammals through participating in 
the degeneration of the corpus luteum. It also indirectly 
affects the production of steroids and follicular develop-
ment by inhibiting follicle-stimulating hormone (FSH)-
induced IL-6 [20].

A regulatory relationship between thyroxine and hypo-
thalamus-pituitary-ovary axis has been observed in earlier 
clinical research, but the definite mechanism has not been 
established. In a previous study, the levels of TNF-α, IL-6, 

Fig. 1  The levels of serumT3 and T4 were reduced in the thyroidectomized rats, but the levels of serum TSH followed the opposite trend. A The 
experimental workflow: B Surgical picture of the thyroid excision
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and other cytokines increased in hypothyroidism rats [21]. 
Thus, we speculated that hypothyroidism had an impact 
on the growth, development, and differentiation of cells in 
ovarian tissues via altering the expression of IFN-γ in the 
hypothalamus-pituitary-ovarian-axis. We also aimed to elu-
cidate whether IFN-γ had a direct link during this process. 
hypothalamus-pituitary-ovary axis. Therefore, to explore 
the role of thyroxine in the hypothalamus-pituitary-ovary 
axis and its relationship with IFN-γ, we detected the expres-
sion of IFN-γ in the hypothalamic-pituitary-ovarian axis of 
hypothyroidism rats at the mRNA and protein levels. The 
result will pave the path for research on hypothyroidism 
that influence the function of the reproductive system at the 
ovarian level through the immune system.

Materials and methods
Ethics statement
Sprague Dawley rats were purchased from the animal 
center of the Genetics Institute, Chinese Academy of Sci-
ences, Beijing, China (Certificate Number: SCXK-PLA 
2012–0004). All animal experiments were conducted 
after an approval was obtained from the Institutional 
Animal Care and Use Committee at the Academy of Mili-
tary Medical Sciences Institute (Beijing, China; approval 
no. SYXK2014-0002).

Animal treatments
Eighteen female rats (200 ± 20  g) were randomly 
divided into three groups. In the sham-operated 
group, thyroid glands of the rats were exposed but 
not removed after anesthesia. After stitching, the rats 

continued to be reared. In the experimental thyroidec-
tomized group, the rats were anesthetized by intraperi-
toneal injection of 1% sodium pentobarbital (30  mg/
kg) [22], and bound on the operating table in the supine 
position. Approximately 5  cm of the skin at the mid-
line of the ventral side of the neck was incised. Then, 
the larynx and trachea were exposed, and the thyroid 
gland on the bilateral sides of the trachea behind the 
throat was removed (Fig.  1). In the thyroidectomized 
group treated with T4, the rats were fed normally after 
removing the thyroid gland following the aforemen-
tioned method, and injected with thyroxine (T1775, 
Sigma, St Louis, MO, USA) intramuscularly, 0.02  mL/
per time, seven consecutive days. After 14 days’ normal 
feeding, the rats in the three groups were anesthetized 
by intramuscular injection of 1% pentobarbital sodium 
(30  mg/kg). Blood samples were collected from the 
heart and centrifuged (3000  g). The serum was stored 
at 2 °C–8 °C for radioimmunoassay.

Tissue separation
All rats were substituted with cervical dislocation, the 
hypothalamus, pituitary, and ovary tissues were surgi-
cally separated (Fig.  2). The tissues were placed in pre-
cooled saline and immediately prepared for the following 
experiments. All the tissues were separated into three 
parts, which were then differently prepared as follows. 
One part was fixed with 4% paraformaldehyde (pH 7.4) 
at 4 °C for 24 h and then embedded in paraffin for immu-
nohistochemical analysis. Another part of the hypothala-
mus, pituitary gland and ovary tissues were immediately 

Fig. 2  The hypothalamus was located at the ventral side of the diencephalon, the hypothalamus, the dorsal optic tract, and the base of the third 
ventricle of the supraoptic and paraventricular nuclei. The hypothalamus tissues were separated by surgery
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frozen in liquid nitrogen and stored at—80 °C for RT-PCR 
assay. The remaining tissues were subjected to Western 
blotting.

Radioimmunoassay
Detection of T3/T4 was carried out following the man-
ufacturer’s instruction of the iodine [125I] thyroxine 
radioimmunoassay kit (approval No.: guoyaozhunzi 
s10930044). Briefly, 100 μL of mouse standard and spare 
serum sample was transferred into a labeled test tube 
(NSB tube plus 200 μL of Zero standard). Except for the 
NSB tubes, 100 μL thyroxine antiserum was added into 
all tubes, which were then incubated at 4  °C for 24  h. 
Next, 100 μL of 125I labeled thyroxine antigen was added 
into each tube, and the samples were incubated at 37 °C 
for 45 min. Further, 500 μL of separating agent was added 
into each tube and mixed well, followed by incubation 
at room temperature for 15  min. After centrifugation 
at 3500  g for 15  min, the supernatant was immediately 
aspirated, and the volume flow of the sediment in each 
tube was determined by a FJ-2008 γ counter. The content 
of T3/T4 in each tube was calculated according to the 
standard curve and the B/BO percentage of the sample 
tube (B: sedimentation count of each tube—precipitation 
count of the non-specific tube; BO: precipitation count of 
the zero-standard tube—precipitation count of the non-
specific tube). Both the experimental thyroidectomized 
group treated with T4 and the sham-operated group 
were determined in the same batch.

Immunohistochemistry
The procedure for IFN-γ immunohistochemical detec-
tion was similar to that described in a previous report [23]. 
The hypothalamus, pituitary gland, and ovary tissues were 
embedded in paraffin; pituitary gland and ovary tissues 
of serial 5-μM sections were obtained. Then, the sections 
were deparaffinized in xylene and rehydrated in graded 
ethanol. Antigen retrieval was performed by microwav-
ing the sections for 16 min (four times for 4 min) at full 
power in 0.01  M sodium citrate buffer (pH 6.0). The tis-
sue sections were then treated with 3% H2O2; non-specific 
binding was blocked with 10% normal donkey serum. rat 
IFN-γ antibody (I5027, 1:100, Sigma-Aldrich, St Louis, 
MO, USA) was subsequently added, followed by incu-
bation at 4 °C for 24 h. After further washing in PBS, the 
sections were incubated with rabbit anti-rat IgG (1:50; 
GBI, Washington state, USA) for 2  h at room tempera-
ture. After the sections were rinsed with PBS, horseradish 
enzyme-labeled Streptomyces ovalbumin working solution 
(GBI, Washington state, USA) was added for 2 h, and the 
peroxidase activity was detected with diaminobenzidine. 
Finally, the sections were counterstained with hematoxylin 
and mounted using conventional methods.

RT‑PCR
The hypothalamus, pituitary gland, and ovary tissues were 
collected as specified above and grinded with liquid nitro-
gen. Total RNA was isolated using Trizol reagent (Invit-
rogen; Carlsbad, USA) and dissolved in 50 μL RNasefree 
water. We added 1 mL of Trizol to every 50–100 mg pow-
der, shacked well, and placed the samples at 4 °C for 15 min. 
Then, chloroform was added in a ratio 0.2 mL chloroform/ 
1 mL Trizol. The samples were mixed well by vortex oscil-
lation for 30 s, placed at 4 °C for 2–3 min, and centrifuged 
at 12,000  g for 15  min at 4  °C. After centrifugation, the 
supernatant was transferred to a new tube, followed by 
the addition of isopropanol in a ratio 0.5 mL isopropanol/ 
1 mL Trizol, and the samples were evenly mixed. Next, the 
supernatant was placed at—20 °C for 10 min, and centri-
fuged at 12,000 g for 15 min at 4 °C. Isopropanol was dis-
carded, and 1 mL of 75% ethanol was added. Further, the 
precipitate block was flipped up with fingers, inverted sev-
eral times, and centrifuged at 7500 g for 5 min at 4 °C. 75% 
ethanol was discarded and the precipitate block was dried 
naturally in ultra-clean table for 15–30 min. Nuclease-free 
water was added into the precipitate block to promote dis-
solution at 65 °C for 5–10 min. The amount of RNA was 
determined by UV spectrophotometer, and the integrity of 
RNA was detected by agarose gel electrophoresis. Reverse 
transcription was performed using a one-step RT-PCR kit 
(Takara; Tokyo, Japan). The primers that were used are dis-
played in Table 1. The fold changes in the gene expression 
were calculated using the 2 − ΔΔCt method [24]. Quantifi-
cation of related mRNA level was normalized to GAPDH 
mRNA level.

Western blotting
After weighing the hypothalamus, pituitary gland and 
ovary, RIPA lysate was added at the ratio of weight: lysate 
volume equal to 1:9. The tissue homogenate was centri-
fuged three times at 15,000 g for 10 s. After incubation on 
ice for 20 min, the supernatant was centrifuged at 4 °C and 
13,000 g. Then, the supernatant was transferred to PVDF 
membrane by SDS-PAGE (Sigma), which was subsequently 
taken out and soaked in 3% BSA-TBST, and then sealed for 
30 min by shaking at room temperature. After the block-
ing solution was discarded, IFN-γ antibody was added at 
a dilution ratio 1:10,000, and the solution was incubated 

Table 1  Sequences used for quantitative RT-PCR

Gene Sequences (5’ to 3’)

Ifng-F GAG​GAA​CTG​GCA​AAA​GGA​CG

Ifng-R CAG​GTG​CGA​TTC​GAT​GAC​AC

GAPDH-F TGC​TGA​GTA​TGT​CGT​GGA​G

GAPDH-R GTC​TTC​TGA​GTG​GCA​GTG​AT
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for 10  min at room temperature and then overnight at 
4 °C. The membrane was washed five times with TBST for 
3 min each time, and incubated 40 min at room temper-
ature with the secondary anti mouse IgG (H + L) HRP at 
the dilution ratio of 1:10,000. Then wash the membrane by 
TBST 6 times, for 3 min each time. After ECL was added 
to the PVDF membrane for 3–5 min, the membrane was 
exposed for 10 s to 5 min (the exposure time was inversely 
proportional to the light intensity). Finally, developed for 
2 min, and performed fixation. The gray values of protein 
bands were quantified by ImageJ software. Quantification 
of related proteins was normalized to β-actin levels.

Statistical analysis
Significant differences and P‐values were determined 
using unpaired t‐test (two groups) or one‐way ANOVA 
(multiple groups) with GraphPad Prism 9 software. All 
data are expressed as means ± SD (n = 6).

Results
The levels of serum T3 and T4 in thyroidectomized rats 
were lower
To confirm that thyroidectomization affected the thy-
roid hormones, the serum TSH, T3, and T4 levels were 
directly detected by RIA in the three groups, including 
the sham-operated thyroidectomized, the experimental 
thyroidectomized, and thyroidectomized treated with 
T4 groups (Fig. 3). Our results showed that the levels of 
T3 and T4 were significantly lower in the experimental 
thyroidectomized group (P = 0.035, P = 0.033), while the 
TSH were higher (P = 0.029). In addition, the decreased 
T3 and T4 levels in the thyroidectomized group with the 
addition of T4 recovered but no significant effect was 
exerted on the TSH levels. These results suggested that 
T4 might restore the function of thyroid hormones (T3/
T4) in the thyroidectomized rats.

Fig. 3  The levels of serum T3 and T4 were decreased in the thyroidectomized rats. A The levels of serum T3 in the rats; B The levels of serum T4 in 
the rats; C The levels of serum TSH in the rats.*P < 0.05

Fig. 4  IFN-γ was localized in the hypothalamus, pituitary gland, and ovary of the thyroidectomy rats. Rat IFN-γ of in the hypothalamus, pituitary 
gland, and the luteum, and IFN-γ in the follicles are presented in the images. A and B The hypothalamus of the experimental thyroidectomized 
group treated with T4; C and D The hypothalamus of the experimental thyroidectomized group; E and F The pituitary gland of the sham-operated 
group; G and H The pituitary gland of the experimental thyroidectomized group; I–L The corpus luteum and the follicles of the experimental 
thyroidectomized group with T4 addition; (M–P) The corpus luteum and the follicles of the experimental thyroidectomized group. The scale bar in 
A, C, E, F, G, I, K, M, and O indicates 50 μm, whereas that in B, D, F, H, J, L, N, and P represents 10 μm

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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IFN‑γ was detected in the hypothalamus, pituitary gland, 
and ovaries of thyroidectomized rats
To further investigate the functional role of IFN-γ in the 
thyroidectomized rats, immunohistochemistry assay 
was employed to determine the expression and loca-
tion of IFN-γ in the tissues. No positive staining of IFN-γ 
was observed in the hypothalamus, pituitary glands, and 
ovary of rats in the treatment or sham-operated groups. 
IFN-γ immunoreactive-positive substances were detected 
in the hypothalamus, pituitary gland, and ovary of rats of 
the experimental thyroidectomized group treated with T4 
(Fig. 4). In the hypothalamus, they were located in the cyto-
plasm of neurons with around 50% of them with positive 
staining observed by a light microscope. In the pituitary 
gland, they were situated in the cytoplasm of the pars dis-
talis adenohypophysis, and arranged closely IFN-γ-positive 
cells constituted approximately 90%. No IFN-γ immunore-
active-positive substance was found in the neurohypophy-
sis or other parts of the pituitary gland. In the ovary, IFN-γ 
immunoreactive-positive substances were mainly detected 
in the cytoplasm of luteal and thecal cells, about 60% of 
which were positive. In addition, no positive substances 
were observed in other parts of the ovary.

Increased IFN‑γ in the hypothalamus, pituitary gland, 
and ovary tissues
To quantify the mRNA level of IFN-γ in the hypothalamus, 
pituitary gland and ovary tissues (Fig. 5A), RT-PCR results 
showed that the experimentally thyroidectomized group 
was significantly higher than that of the sham-operated 
group (P = 0.017, P = 0.009, P = 0.021), while the treatment 
group was found to have significant differences of IFN-γ 
mRNA level only in pituitary gland and ovary from that 
of sham-operated group (P = 0.040, P = 0.041), and sig-
nificantly decreased mRNA expression of IFN-γ compared 
with experimental thyroidectomized group (P = 0.012, 
P = 0.032). The expression of IFN-γ in the hypothalamus 
of the treatment group was significantly higher than that in 
the sham-operated group (P = 0.037), but lower than that 
in the experimental thyroidectomized group (P = 0.043). 

Thyroidectomy significantly increased IFN‑γ protein levels 
in the hypothalamus, pituitary gland, and ovary
Western blotting was used for detect determine the IFN-γ 
levels in the hypothalamus, pituitary gland, and ovary tis-
sues, of the sham-operated thyroidectomized, the experi-
mental thyroidectomized group, and the thyroidectomized 

treated with T4 rat groups (Fig. 5B). Data showed that the 
expression of the IFN-γ protein in the pituitary gland and 
ovary of the treatment group was higher than that of the 
sham-operated group (P = 0.045, P = 0.042)), but was sig-
nificantly lower than that of the experimental thyroidec-
tomized group (P = 0.038, P = 0.008, P = 0.026). Altogether, 
IFN-γ was increased both in mRNA and protein to respond 
the thyroidectomized rats and T4 supplement inhibited 
the increased IFN-γ, suggesting that IFN-γ can serve as 
the indicator in the participate the thyroxine modulate the 
ovarian function in the hypothalamic-pituitary-ovarian 
axis.

Discussion
As a metabolic hormone, TH maintains the body’s func-
tion via multiple target organs, and its abnormal secre-
tion may induce diverse endocrine diseases, influencing 
the structure and function of many organs and systems, 
including the reproductive system [25]. In recent years, 
increasingly more research has been conducted to inves-
tigate the impact of thyroid disease on reproductive 
function [26–28]. A large number of experimental stud-
ies have shown that thyroid dysfunction affects repro-
ductive hormone levels in female animals [7]. Previous 
reports have revealed that the ovaries are vulnerable to 
immune attack, leading to diseases such as premature 
aging and polycystic ovary. Taken together, hypothyroid-
ism is related to ovarian disease since thyroxine tablet 
treatments mitigate the clinical symptoms and promote 
functional restoration of the ovary in patients with both 
disorders. However, it remains elusive whether hypo-
thyroidism has a profound effect on the growth, devel-
opment, and differentiation of ovarian cells by changing 
cytokine levels. Moreover, thyroid disease is also an auto-
immune disease [29, 30], suggesting a close link between 
them.

IFN-γ is produced by a variety of cells and possesses 
diverse biological activities, such as antiviral, antitumor, 
and immune regulation [31]. In addition, it participates in 
regulating reproductive, endocrine, metabolic, and other 
physiological activities [32, 33]. Generally, previous reports 
on the association between cytokines and thyroid function 
have been focused on TNF-α, IL-1, and IFN-γ, all exerting 
an inhibitory effect on thyroid activities. However, conflict-
ing results have been obtained on the role of IFN-γ in the 
pathological process of adult hypothyroidism induced by 
autoimmune thyroiditis. In this study, a hypothyroidism 

(See figure on next page.)
Fig. 5  mRNA and protein levels of IFN-γ. A The relative expression of IFN-γ was detected by RT-PCR assay. The values representing the mRNA level 
were relative to the internal reference gene GAPDH;*P < 0.05, **P < 0.01, #P < 0.05 B The protein levels of IFN-γ in the hypothalamuses and the pituitary 
gland and ovary glands of each experimental group. Relative expression of IFN-γ to β-actin. *P < 0.05, **P < 0.01, #P < 0.05, ##P < 0.01. Full-length blots 
are presented in Supplementary Figures S1
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Fig. 5  (See legend on previous page.)
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model was established by surgical removal of the thyroid 
gland. In addition, based on SP and H2O2-DAB yellow col-
oring method, RT-PCR, and Western blotting, IFN-γ was 
detected in the hypothalamus, pituitary gland and ovary. 
The results obtained here suggest that interferon-γ may play 
a landmark role in the abnormalities of the hypothalamus-
pituitary-ovary axis and reproductive function caused by 
hypothyroidism. Thus, it can serve as a new index for the 
detection of the impact of hypothyroidism on the reproduc-
tive system function through cytokines at the ovarian level.

Cytokines are associated with ovarian function, but the 
interaction between the immune and reproductive sys-
tems seems to be rather complicated. Studies on mammals 
showed that immune cells participate in the regulation 
of the hypothalamus-pituitary-ovary axis. Interestingly, 
cytokines are involved in every link of the thalamus-pitui-
tary-ovary axis, and even affect information transmission, 
by connecting different systems (the immune, nervous, 
endocrine, and endothelial systems). Ovary is considered 
to be the main interaction organ between the immune and 
the endocrine systems [34, 35]. In addition, IFN-γ is also 
crucial for tissue repair of mammalian reproductive sys-
tem [36], which is mediated by related immune responses. 
IL-1B, IL-6, IFN-γ, and TNF-a and other cytokines were 
found to act as key modulators in this regard [37, 38]. 
Therefore, IFN-γ may play a critical role to trigger the 
innate immunity in the ovary in the hypothalamus-pitui-
tary-ovary axis of rats with hypothyroidism.

A previous study showed that hypothyroidism rats had 
increased levels of TNF-α, IL-6, and other cytokines [39]. 
Therefore, we hypothesized that hypothyroidism might 
affect the growth, development, and differentiation of 
the cells in the ovarian tissue by altering the cytokine lev-
els in vivo. In this study, we preliminarily determined the 
effect of thyroid hormone on IFN-γ expression in the 
hypothalamus-pituitary-ovary axis. Our findings provide 
novel insights into the effects of hypothyroidism on the 
reproductive system function through the hypothalamus-
pituitary-ovary axis at the ovarian level via the immune 
system. Based on our results, in our further research, we 
intend to detect the expression of thyroid hormone recep-
tor protein in tissues and explore the mechanisms by which 
thyroid hormone affects the cytokine level in the hypothal-
amus-pituitary-ovary axis. Moreover, we will study the rel-
evant signaling pathways through transcriptome analysis to 
explore the mechanism of thyroid hormone on the hypo-
thalamus, pituitary gland, and ovary.
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