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Abstract 

Objective:  To investigate the association between different body fat distribution and different sites of BMD in male 
and female populations.

Methods:  Use the National Health and Nutrition Examination Survey (NHANES) datasets to select participants. The 
weighted linear regression model investigated the difference in body fat and Bone Mineral Density (BMD) in different 
gender. Multivariate adjusted smoothing curve-fitting and multiple linear regression models were used to explore 
whether an association existed between body fat distribution and BMD. Last, a subgroup analysis was performed 
according to age and gender group.

Results:  Overall, 2881 participants were included in this study. Compared to males, female participants had lower 
BMD (P < 0.05) and higher Gynoid fat mass (P < 0.00001), while there was no difference between Android fat mass 
(P = 0.91). Android fat mass was positively associated with Total femur BMD (Males, β = 0.044, 95% CI = 0.037, 
0.051, P < 0.00001; Females, β = 0.044, 95% CI = 0.039, 0.049, P < 0.00001), Femoral neck BMD (Males, β = 0.034, 95% 
CI = 0.027, 0.041, P < 0.00001; Females, β = 0.032, 95% CI = 0.027, 0.037, P < 0.00001), and Total spine BMD (Males, 
β = 0.036, 95% CI = 0.029, 0.044, P < 0.00001; Females, β = 0.025, 95% CI = 0.019, 0.031, P < 0.00001). The Gynoid fat 
mass, subgroup analysis of age and ethnicity reached similar results.

Conclusion:  Body fat in different regions was positively associated with BMD in different sites, and this association 
persisted in subgroup analyses across age and race in different gender.
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Introduction
Obesity was one of the serious health concerns affecting 
the health of the global population [1], especially in the US 
[2]. It had been shown that the adverse effects of obesity 
might be related to fat distribution [3]. Android obesity 
(also known as abdominal obesity, apple-shaped obesity) 

was associated with increased cardiovascular risk [4], mor-
tality [5], or hypertension [6]. However, other studies sug-
gested that Gynoid obesity (also known as pear-shaped 
obesity) may be related to a reduced cardiovascular disease 
risk [7] and metabolic disease [8]. So, what was the effect 
of fat distribution on BMD without considering body lean 
weight? This topic remained insufficiently researched.

Most previous studies used Body Mass Index (BMI) to 
assess obesity and explore the association between BMI 
and BMD [9, 10] and concluded a positive association. 
Nevertheless, BMI was widely used because it was easy to 
calculate, but it did not distinguish between fat, muscle, 
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and fat distribution in different body sites. Furthermore, 
the extant studies that had examined the association 
between body fat and BMD reached controversial con-
clusions. In studies of Chinese populations, some studies 
had concluded that body fat mass was positively associ-
ated with BMD in both men and women [11–13], while 
other studies had concluded that increased fat had a 
negative effect on BMD [14]. Differential findings across 
gender in studies of populations in Brazil [15], Japan [16], 
Australia [17], and elsewhere were also found.

Furthermore, some of the available studies suggested 
that there might be differences in fat distribution between 
males and females. Males tended to have “android” 
obesity, where fat was concentrated in the abdomen, 
while females tended to have “gynoid” obesity, with more 
fat in the hips and thighs [18, 19]. This gender difference 
in fat distribution might be related to congenital genetics 
[20] and acquired environment [21], but whether this 
potentially different fat distribution affected the BMD 
of the femur or lumbar spine in different gender had not 
been well studied.

Thus, this study aimed to investigate the association 
between body fat distribution (Android fat and Gynoid 
fat) and different sites of BMD (Femur and Lumbar spine) 
in different gender populations in the US. Moreover, we 
hypothesized that android fat mass might be associated 
with higher lumbar spine BMD, while gynoid fat mass 
associated with higher femur BMD in males and females.

Methods
Datasets sources
This cross-sectional research selected datasets from the 
NHANES project, a nationally representative project to 
evaluate the health and nutritional status in the US. Data-
base data was open to all researchers worldwide and easily 
accessible from the Centers for Disease Control and Pre-
vention (CDC) website. In this study, we used the NHANES 
2013–2014 and NHANES 2017–2018, as these were the 
only two datasets that had data on both BMD and body 
fat mass. After the datasets were downloaded from the 
CDC website to personal devices, EmpowerStats software 
was applied to merge and analyze the data. The study was 
reviewed and approved by NCHS IRB/ERB, all participants 
signed informed consent forms, and all methods were per-
formed following relevant guidelines and regulations.

Participants eligible
Before the beginning of this study, the following people 
were not included: 1) Pregnant; 2) Received radiographic 
contrast agents in the past week; 3) Had body fat mass 
exceeding the device limits; 4) Had congenital malfor-
mations or degenerative diseases of the spine; 5) Had 

lumbar spinal surgery; 6) Had hip fractures or congeni-
tal malformations; 7) Had hip surgery; 8) Had implants 
in the spine, hip or body, or other problems affecting 
body measurements. From NHANES datasets, 20,194 
participants were initially included in this study, 14,851 
participants without femoral or lumbar spine BMD data, 
2455 participants without body fat data, and 7 partici-
pants taking anti-osteoporosis or weight-loss pills were 
excluded. Eventually, a total of 2881 participants were 
included (Fig. 1).

Exposure ‑ body fat mass
The dual-energy X-ray absorptiometry (DXA) measured 
participants’ body fat mass [22]. The DXA model was 
Hologic QDR 4500A Fan Beam Bone Densitometer (Hol-
ogic, Inc., Bedford, Massachusetts), and the radiation 
dose of the equipment was less than 20uSv. The follow-
ing methods were used for quality control: 1) monitor-
ing of staff and machine operating conditions; 2) DXA 
scans followed standard radiological techniques, with 
expert review of all results to verify accuracy and con-
sistency of results; 3) densitometers were calibrated daily 
through a rigorous body-mode scanning program, with 
longitudinal monitoring and cross-calibration of instru-
ments at each site, using cumulative statistical methods 
(CUSUM) and Mobile Examination Center (MEC)-spe-
cific model data to identify breaks in densitometer cali-
bration during the survey. The main measurements were 
Android/Gynoid fat mass, and the Hologic APEX soft-
ware (Version 3.2) defined the Android/Gynoid regions 
[23]. The Android area was the area of the lower part of 
the trunk bounded by two lines: the horizontal cut line 
of the pelvis on its lower side and a line automatically 
placed above the pelvic line. Gynoid was defined by an 
upper line and a lower line, with the upper line being 
1.5 times the height of the Android area below the pel-
vic line and the lower line being twice the height of the 
Android area. Finally, the Android/Gynoid ratio calcu-
lation was performed from the measured Android and 
Gynoid data.

Outcome – BMD
Participants’ BMD was also measured by DXA equip-
ment. The BMD measurement device information was 
the Hologic QDR-4500A sector beam densitometer (Hol-
ogic, Inc., Bedford, Massachusetts), and the rest of the 
radiation values and accuracy monitoring were consist-
ent with the body fat measurement device. The femur and 
lumbar spine were scanned, including the Total femur, 
Femoral neck, and Total spine regions. Quality control 
of staff, scanning instruments, and scanning results were 
performed throughout the scanning process.
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Covariates
The following covariates were selected: demographics 
(age, race, education level, and poverty ratio), personal 
habits (physical activity, smoke, and alcohol use), 
comorbidities (osteoporosis, high blood pressure, and 
diabetes), and body measurements (Height, Weight, Body 
Mass Index). Demographic characteristics, personal 
habits, and comorbidity results were obtained from 
questionnaires, and body measurements were obtained 
from machine measurements.

Statistical analysis
All study models were analyzed in gender subgroups 
to explore whether a gender difference existed between 
body fat distribution and BMD. Continuous variables in 

participants’ demographic information were expressed 
as Mean +/− standard deviations (SD), and P-values 
were calculated using a weighted linear regression model. 
Dichotomous variables were expressed as percentages, 
and weighted chi-square tests were used to calculate 
P-values.

Smoothing curve fitting models were used to assess 
whether there was an association between Android fat 
mass, Gynoid fat mass, and Android to Gynoid ratio and 
BMD. If the smoothing curve fitting were meaningful, the 
multiple regression analysis models were used to analyze 
the association between body fat mass and BMD, and 
the results were expressed in terms of β, 95% confidence 
intervals (CI), and P-values. Adjustments of covariates in 
the above models were based on the following criteria: 1) 

Fig. 1  The participants selecting flow chart
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the addition or removal of the variable from the model 
had an effect of more than 10% on the coefficient value of 
body fat mass; 2) the covariate P < 0.1 in univariate model 
vs BMD (Supplementary File 1).

Finally, age and race analyses under different gender 
subgroups were performed with the same analytical 
models as above. All analyses were performed with R 
software (3.6.3 version) and EmpowerStats software 
(https://​www.​empow​ersta​ts.​com). P < 0.05 was 
considered statistically significant.

Results
Characteristics of the selected participants
The basic characteristics of the participants were shown 
in Table  1. A total of 2881 participants (1245 males, 
1636 females; mean age: 49 years) were included in 
this study. Among male participants, 33.9% had a daily 
physical activity, only 0.2% had osteoporosis, 43.3% had 
high blood pressure, and 21.9% had diabetes. While for 
female participants, 12.2% had osteoporosis, 48.5% had 
high blood pressure, and 15.7% had diabetes (All P-values 
< 0.05). For body examination data, female participants 
had higher BMI, Gynoid fat mass, and lower BMD when 
compared to the male participants (All P-values < 0.05).

Multivariable associations
The multivariate-adjusted smoothed curve fitting models 
were used to investigate the association between Android 
fat mass, Gynoid fat mass and Android to Gynoid ratio 
and BMD in males and females. There was a linear posi-
tive association between Android fat mass and BMD in 
each region, regardless of male or female (Fig.  2). Simi-
larly, there was also a linear positive association between 
Gynoid fat mass and individual regional BMD in differ-
ent gender participants (Fig.  3). However, there was no 
apparent curvilinear association between the Android to 
Gynoid ratio and BMD in each region in males or females 
(Fig. 4).

Furthermore, multiple linear regression models were 
used to assess the specific β values and 95% CI between 
body fat mass and BMD in different gender (Table  2). 
Android fat mass was positively associated with Total 
femur BMD, Femoral neck BMD and Total spine BMD. 
Similarly, there was a similar positive association 
between Gynoid fat mass and BMD in both males and 
females (Results were shown in Table 2).

Subgroup analysis
In different age groups, Android fat mass (Males, 
Supplementary Table  1, Supplementary Fig.  1; Females, 
Supplementary Table  2, Supplementary Fig.  2) and 
Gynoid fat mass (Males, Supplementary Table  1, 
Supplementary Fig.  3; Females, Supplementary Table  2, 

Supplementary Fig.  4) were positively associated 
with BMD. In different race groups, Android fat mass 
(Males, Supplementary Table  3, Supplementary Fig.  5; 
Females, Supplementary Table  2, Supplementary Fig.  6) 
and Gynoid fat mass (Males, Supplementary Table  3, 
Supplementary Fig.  7; Females, Supplementary Table  1, 
Supplementary Fig.  8) were also positively associated 
with BMD.

Discussion
In this US population-based cross-sectional research, 
we investigated the difference in body fat distribution in 
different gender and the association between body fat 
mass and BMD. There was a positive association between 
body fat distribution (Android and Gynoid) and BMD at 
each site (Femur and Lumbar spine) in both males and 
females. There was no difference in Android fat between 
participants by gender (P = 0.91), while the female 
participant group had higher Gynoid fat (P < 0.00001). 
Lastly, this association persisted when subgroup analyses 
for age and race were performed.

The main finding of this study was that body fat mass 
(Android or Gynoid) was positively associated with 
BMD, regardless of gender (Males or Females) or sites 
(Femur or Lumbar spine), which was inconsistent with 
our hypothesis or conventional perception. Gender 
differences were found in body fat distribution, consistent 
with the previous studies [24, 25]. In males, fat was more 
likely to be concentrated in the abdomen (Android fat), 
and in females, fat was more likely to be concentrated in 
the buttocks (Gynoid fat) [26]. Genome-wide association 
studies from the UK Biobank suggested that specific 
loci might determine fat distribution [27]. On the other 
hand, gene-environment-related effects were one of the 
possible mechanisms. Metabolomics [28], microbiomics 
[29], and the dietary lifestyle of individuals might all be 
involved.

The positive association was similar to the conclu-
sions reached by numerous previous studies, for exam-
ple, in Asian regions [11, 16, 30], and European regions 
[31, 32]. Also, some studies have concluded that there 
was no association or negative association between fat 
distribution and BMD [33–35]. Possible reasons for the 
inconsistent conclusions drawn from the above studies 
were as follows: 1) the sample size was too small, with 
most studies including only tens or hundreds of sam-
ples; 2) differences in age, gender, and ethnicity of the 
included participants; 3) differences in adjusted covari-
ates when performing correlation analyses; and 4) 
other unknown reasons. Several possible explanations 
for the higher body fat mass associated with higher 
BMD. First, the more body fat there was, the greater 
the mechanical load on the bones. The mechanical 

https://www.empowerstats.com
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load was very important for BMD maintenance [36, 
37], and BMD would also decrease if one lost weight 
[38] or were in a weightless environment [39]. Second, 

hormones in high body fat individuals were important 
for protecting BMD. Estrogen was an early discov-
ery of adipocyte-derived hormone, where androgens 

Table 1  The characteristics of the participants selected

Mean +/− SD for continuous variables. Weighted linear regression model calculated P-value

Percentage (%) for continuous variables. Weighted chi-square test model calculated P-value

Male (N = 1245) Female (N = 1636) P value

Demographic Data
Age (Years) 49.344 ± 5.717 49.016 ± 5.681 0.12498

Race (%)

  Mexican American 7.783 7.115 0.64412

  Other Hispanic 3.908 5.041

  Non-Hispanic White 66.650 66.031

  Non-Hispanic Black 13.719 13.926

Other Race 7.941 7.887

Poverty ratio 3.149 ± 1.723 2.858 ± 1.697 0.00001

Education level (%)

   < ninth grade 3.789 3.302 < 0.00001

  ninth - eleven grade 10.476 10.935

  High school 23.181 21.038

  Some college 25.322 38.829

  College graduate 37.232 25.897

Personal habits
Physical activity (%)

  Yes 33.920 27.527 0.00021

  No 66.080 72.473

Smoke (%)

  Yes 47.632 46.321 0.48372

  No 52.368 53.679

Alcohol use days per year 2.826 ± 2.134 2.197 ± 2.096 < 0.00001

Comorbidities
Osteoporosis (%)

  Yes 0.210 12.223 < 0.00001

  No 99.790 87.777

High blood pressure (%)

  Yes 43.423 48.587 0.00579

  No 56.577 51.413

Diabetes (%)

  Yes 21.900 15.749 0.00003

  No 78.100 84.251

Body examination data
  Height (cm) 176.766 ± 7.022 162.282 ± 6.906 < 0.00001

  Weight (kg) 92.645 ± 20.987 80.028 ± 21.643 < 0.00001

  BMI (kg/m2) 29.548 ± 6.049 30.285 ± 7.657 0.00513

  Android fat mass (kg) 2.843 ± 1.364 2.849 ± 1.466 0.91001

  Gynoid fat mass (kg) 4.204 ± 1.607 5.580 ± 2.029 < 0.00001

  Android to Gynoid ratio 1.145 ± 0.185 0.927 ± 0.177 < 0.00001

  Total femur BMD (g/cm2) 1.008 ± 0.146 0.949 ± 0.154 < 0.00001

  Femoral neck BMD (g/cm2) 0.826 ± 0.140 0.795 ± 0.146 < 0.00001

  Total spine BMD (g/cm2) 1.049 ± 0.162 1.036 ± 0.157 0.03418
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in adipocytes were transformed into estrogen by the 
action of aromatase [40, 41]. In addition, other hor-
mones such as leptin [42] and insulin [43] were also 

involved in the adipose-bone mechanistic process. 
Finally, adipocytes and bone cells had a common ori-
gin from mesenchymal stem cells, and to some extent, 

Fig. 2  The association between Android fat mass and BMD. A. Total femur; (B). Femoral neck; (C). Total spine

Fig. 3  The association between Gynoid fat mass and BMD. A. Total femur; (B). Femoral neck; (C). Total spine

Fig. 4  The association between Android to Gynoid ratio and BMD. A. Total femur; (B). Femoral neck; (C). Total spine
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adipogenesis and osteogenesis were dynamic processes 
involving multiple factors [44, 45].

The clinical significance of the present study was that, 
among other diseases, obesity could be considered a het-
erogeneous disease, where different body fat distribu-
tion might produce completely different or even opposite 
effects [46, 47]. However, for bone BMD, all were posi-
tively correlated and did not vary by the sites (femur or 
lumbar spine) or other differences (sex, age and race). 
Existing studies were not well explicit in exploring the 
association between fat distribution and BMD, and the 
lack of mechanistic studies made it difficult to explain 
this phenomenon. One possible reason was that, in the 
elderly, android fat and gynoid fat were interlinked and 
interconvertible [48]. Another possible explanation was 
that whether android fat or gynoid fat, they both had 
endocrine functions that produced estrogen, leptin, 
and others that had beneficial impacts on Bone [49]. In 
the future, more studies were needed to investigate the 
underlying reasons for the positive effect of body fat dis-
tribution on BMD.

In the end, the subgroup analysis led to the same 
conclusion. This indicated that the effect of body fat 
distribution on BMD was also not significantly related to 
age and race.

The strengths of this study were the following: 1) a rep-
resentative large sample study; 2) the association of fat 

distribution (Android and Gynoid) on BMD at different 
sites (Femur and Lumbar spine) was explored in different 
gender populations; 3) adjusted for multiple covariates; 
4) subgroup analysis was performed. In fact, the limita-
tions of this study were as follows: 1) although the final 
number of participants included in this study was 2881, 
subsequent studies with larger samples were needed to 
continue validation; 2) this study was a cross-sectional 
and more future research were needed; 3) due to the limi-
tations of the database itself, the menstrual status, partic-
ipants’ hormone levels, whether the female participants 
were menopausal, and were not known, which might 
have unpredictable results on the female population 
impact; and 4) although many covariates were adjusted, 
there were still unknowable covariates. Therefore, to the 
best of our knowledge, the results of this study needed to 
be interpreted with caution.

Conclusion
In this US population-based study, we found that 
Android/Gynoid fat mass was positively associated with 
femur/lumbar spine BMD. In addition, this positive cor-
relation was also present in subgroups of age and race. 
However, the positive association between fat distribu-
tion and BMD was unrelated to sites (Femur or Lumbar 
spine) or gender (Males or Females).

Table 2  The association between Android/Gynoid fat mass and BMD in different gender

All results were expressed as β (95% CI), P-value

Model I: No covariates were adjusted

Model II: Adjusted for Age and Race

Model III: Adjusted according to Supplementary File 1

Model Android fat mass (kg) Gynoid fat mass (kg)

Male Female Male Female

Total femur BMD (g/cm2) Model I 0.048 (0.043, 0.053) 
< 0.00001

0.059 (0.054, 0.063) 
< 0.00001

0.045 (0.041, 0.050) 
< 0.00001

0.042 (0.039, 0.045) 
< 0.00001

Model II 0.048 (0.042, 0.053) 
< 0.00001

0.050 (0.046, 0.054) 
< 0.00001

0.043 (0.038, 0.047) 
< 0.00001

0.035 (0.032, 0.038) 
< 0.00001

Model III 0.044 (0.037, 0.051) 
< 0.00001

0.044 (0.039, 0.049) 
< 0.00001

0.039 (0.034, 0.045) 
< 0.00001

0.030 (0.026, 0.033) 
< 0.00001

Femoral neck BMD (g/cm2) Model I 0.035 (0.030, 0.041) 
< 0.00001

0.044 (0.040, 0.048) 
< 0.00001

0.036 (0.032, 0.041) 
< 0.00001

0.038 (0.035, 0.040) 
< 0.00001

Model II 0.035 (0.030, 0.040) 
< 0.00001

0.035 (0.031, 0.039) 
< 0.00001

0.034 (0.029, 0.038) 
< 0.00001

0.030 (0.027, 0.033) 
< 0.00001

Model III 0.034 (0.027, 0.041) 
< 0.00001

0.032 (0.027, 0.037) 
< 0.00001

0.030 (0.025, 0.036) 
< 0.00001

0.028 (0.024, 0.031) 
< 0.00001

Total spine BMD (g/cm2) Model I 0.047 (0.041, 0.053) 
< 0.00001

0.043 (0.038, 0.048) 
< 0.00001

0.044 (0.039, 0.049) 
< 0.00001

0.033 (0.030, 0.037) 
< 0.00001

Model II 0.048 (0.042, 0.054) 
< 0.00001

0.035 (0.031, 0.040) 
< 0.00001

0.043 (0.037, 0.048) 
< 0.00001

0.026 (0.023, 0.030) 
< 0.00001

Model III 0.036 (0.029, 0.044) 
< 0.00001

0.025 (0.019, 0.031) 
< 0.00001

0.032 (0.026, 0.039) 
< 0.00001

0.020 (0.016, 0.025) 
< 0.00001
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