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Dietary acid load modifies the effects 
of ApoA2–265 T > C polymorphism on lipid 
profile and serum leptin and ghrelin levels 
among type 2 diabetic patients
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Abstract 

This investigation with aimed the effect of APOA2–265 T > C polymorphism and dietary acid load (DAL) as either 
potential renal acid load (PRAL) and net endogenous acid production (NEAP) intake interaction on metabolic markers in 
type 2 diabetes mellitus (T2DM). In present cross-sectional study, 737 patients with T2DM (290 men and 447 women) 
were enlisted from diabetes centers in Tehran. The dietary intakes of all participants during the last year was acquired 
by a validated semi-quantitative food frequency (FFQ) questionnaire. Polymerase chain reaction (PCR) was used for gen-
otyping the APOA2–265 T > C. Biochemical indises containing leptin, ghrelin, total cholesterol (Bailey et al., J Clin Invest 
97:1147–1453, 1996), low-density lipoprotein cholestrol (LDL-C), high-density lipoprotein cholestrol (HDL-C), triglycer-
ide (TG), superoxide dismutase (SOD), high sensitivy C-reactive protein (hs-CRP), total antioxidant capacity (TAC), pen-
traxin-3 (PTX3), prostaglandin F2α (PGF2α) and interleukin 18 (IL18) were measured by standard method. Atherogenic 
indices (AIP, AC, CR-I, CR-II) were calculated. The gene-diet interactions were evaluated using an GLM. The frequency 
overall prevalence of rs5082 genotypes was 63.82 and 36.17% for T-allele and C-allele respectively. TG, Ghrelin, and 
hs-CRP concentrations were significantly higher among carriers with C allele than TT homozygotes. However, TC/CC 
genotypes have lower PTX3 than TT homozygotes (P < 0.05). C-allele carriers had highest mean of BMI (PNEAP=0.04, 
PPRAL = 0.006), WC (PNEAP=0.04, PPRAL = 0.04), TC (PNEAP=0.03, PPRAL = 0.01), ghrelin (PNEAP=0.01, PPRAL = 0.04), and leptin 
(PNEAP=0.04, PPRAL = 0.03) when placed in top tertiles of NEAP and PRAL.BMI, WC, TC, ghrelin, and leptin levels may be 
modified in C carriers by decreasing DAL, though, further investigations are required to confirm these findings.
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Introduction
The prevalence rate of diabetes among Iranian adults is 
rising rapidly which is expected to reach 9.2 million by 
2030 [1]. Cardiovascular diseases (CVDs), known as the 
most common diabetes complication, are responsible for 
mortality among these patients, approximately 10 times 
the normal person [2]. Obesity, stress oxidative and dys-
lipidemia are important risk factors placing diabetic 
patients at increased risk for CVDs [3, 4]. It is believed 
that oxidative stress has a vital role in the progression 
of vascular complications in T2DM. High ROS level in 

Open Access

†Masoumeh Rafiee and Fariba Koohdani contributed equally to this work.

*Correspondence:  masomeh.rafiei@gmail.com; fkoohdan@tums.ac.ir

2 Department of Cellular and Molecular Nutrition, School of Nutritional 
Sciences and Dietetics, Tehran University of Medical Sciences, PO Box: 
141556117, Tehran, Iran
3 Department of Clinical Nutrition, School of Nutrition and Food Science, 
Isfahan University of Medical Sciences, Isfahan, Iran
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12902-022-01083-7&domain=pdf


Page 2 of 11Abaj et al. BMC Endocrine Disorders          (2022) 22:190 

diabetes may be due to reduced Superoxide dismutase 
(SOD) which is known as an antioxidant enzyme and a 
major defender against superoxide [5, 6].

Moreover, dyslipidemia is an abnormal condition 
defined by elevated levels of low density lipoprotein 
cholesterol (LDL-C), triglycerides (TG) and decreased 
level of high density lipoprotein cholesterol (HDL-C) is 
responsible for the appearance of CVDs among patients 
with Type 2 diabetes mellitus (T2DM) [7].

T2DM and CVDs have been long recognized as com-
plex disorders result by interactions between genetic 
and environmental factors [8, 9]. One of the main genes 
involved in increased risk of obesity, T2DM, and CVDs 
is apolipoprotein A2 (ApoA2) [10]. This gene encodes 
ApoA2 protein which is the second most abundant pro-
tein of HDL-C particles [10, 11]. It seems to impair the 
reverse transportation and antioxidant function of 
HDL-C [12] So, increased level of APOA2 promotes the 
development of atherosclerosis and this is considered 
to be a major predictor of CVDs [7, 10, 11, 13]. Cardio-
metabolic risk factors may vary in different variants of 
ApoA2 polymorphism among patients with T2DM [7]. 
APOA2–265 T > C polymorphism (rs5082) is one of the 
single nucleotide polymorphisms (SNPs) which is related 
to anthropometric indices, obesity, insulin resistance, and 
plasma lipids level [7, 10, 11]. Most of studies have found 
that homozygous individuals for C allele have higher level 
of central obesity, BMI, and TC [7, 14–16]. They sug-
gested a direct impact of allele-265 T/C on TG and free 
fatty acids metabolism and revealed that overexpression 
of apoA II may cause a major increase in the level of apoB 
containing lipoproteins [17–19].

Findings suggested a strong relationship between 
APOA2–265 T > C polymorphism and leptin and ghre-
lin levels as an effective possible mechanism for obesity 
which reported a high serum ghrelin among CC patients 
[20, 21]. These two hormones have been recognized to 
play a major role in appetite regulation and body energy 
balance [22, 23]. Also, several studies have been shown 
that leptin and ghrelin levels are strongly affected by die-
tary intake [24–27].

Contradictory findings in previous researches high-
light exploring the interaction between diet and this 
SNP which may affect on anthropometric indices and 
cardio metabolic markers [7]. Diet as a key factor may 
modulate the risk of diabetes and CVDs via interact-
ing with genome [28, 29]. Dietary acid load (DAL) as a 
nutritional indicator has been considered for its meta-
bolic effects [30]. DAL reflects the acid-forming potential 
of a diet containing the potential renal acid load (PRAL) 
and net endogenous acid production (NEAP) estimated 
by dietary intake [31]. High animal protein intake and 
excessive intake of artificially sweetened beverages and 

processed meat and low consumption of fruit and veg-
etables, known as western dietary pattern, induce a low-
grade metabolic acidosis and increase the risk of T2DM 
[32, 33]. It has been suggested a potential relationship 
between metabolic acidosis status, expressed mainly by 
PRAL/NEAP, and cardiometabolic abnormalities in dia-
betic patients [30, 34, 35].

Growing evidence suggests that inflammatory path-
ways as common pathogenetic mediators for diabetes 
complications have been developed due to following an 
unhealthy lifestyle [36]. Pentraxin-3 (PTX3) is a plasma 
protein involving in chronic inflammation and Inter-
leukin-6 (IL-6) as one of the most common molecules 
contributes to inflammation may promote endothelial 
dysfunction and the progression of vascular complication 
[37]. Moreover, a close relationship has been suggested 
between dietary pattern and lipid profile [38, 39]. Several 
studies reported lower HDL-C level in higher tertiles of 
PRAL/NEAP [40, 41]. Moreover, increased BMI has been 
observed in those with higher PRAL/NEAP intake [42, 
43]. Although, nutrients and foods usually interact with 
genes, a few studies have investigated gene-diet interac-
tions among individuals with APOA2–265 T > C poly-
morphism [28, 44]. Previous findings showed a decreased 
level of IL-18 and hs-CRP in higher polyunsaturated 
fatty acids (PUFA) intake and increased BMI, LDL-C, 
LDL/HDL by consuming higher amount of saturated 
fatty acids (SAFA) among individuals with CC genotype 
[11, 44, 45]. Since no investigation searched interactions 
between different dietary patterns and ApoA2 polymor-
phisms, we aimed to investigate how DAL interacts with 
APOA2–265 T > C on metabolic markers including TC, 
LDL-C, HDL-C, TG, ghrelin, leptin, total antioxidant 
capacity (TAC), SOD, IL-18, PTX3 and prostaglandin 
F2α (PGF2α) among patients with T2DM.

Methods and materials
Study population
This cross-sectional study is a part of a project conducted 
on 737 patients with T2DM (290 men and 447 women). 
Participants with fasting blood glucose (FPG) levels of 
≥126 mg/dl or were under treatment with medication 
(oral) were selected randomly from the diabetes centers 
in Tehran 187 patients were suffering from diabetes for 
more than 10 years and diabetes duration was less than 
10 years among 550 patients. Patients were excluded if 
they were under 35 or over 65 years old, receiving insu-
lin, intake of vitamin, mineral and herbal supplements, 
and pregnant or lactating women. The written informed 
consent was obtained from all the participants. Differ-
ent information such as age, education, medical family 
history, medication history, duration of diabetes history 
was collected using pre-tested questionnaires [11]. All 
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protocols of this study were conducted in accordance 
with Helsinki Declaration and approved by the Ethics 
Committee of Tehran University of Medical Sciences (IR.
TUMS.VCR.REC.1395.15060). All of the participants 
completed a written informed consent form before tak-
ing part in the study.

Measurements
Dietary intake was collected using a semi-quantitative 
food frequency questionnaire (FFQ) (148 food items) 
through interview by nutrition expert. This question-
naire was validated in Iran [46]. The frequency of 
daily consumption of each food item for all partici-
pants were calculated via U.S. Department of Agricul-
ture and Food Composition Table of Iran. The portion 
sizes of consumed foods were converted to grams. Data 
were analyzed by Nutritionist III software (version 7.0, 
N-Squared Computing).

DAL was estimated by previously established 
algorithms:

NEAP  (mEq/day) = (54.5 × protein  [g/day]/potas-
sium  [mEq/day]) − 10.2. To estimate the NEAP and 
PRAL, the nutrients intakes were adjusted for energy 
intake by residual method [47–49].

Weight, height, and WC were computed in the fast-
ing state and minimal clothing via Seca falcon scales (the 
nearest 100 g and 0.5 cm, respectively) [50]. BMI was esti-
mated as weight (kg) divided by height2 (m2). The classi-
fied physical activity questionnaire was used for the daily 
physical activity measurement based on metabolic equiv-
alent to task (MET). The validity of the questionnaire was 
confirmed in Iran [51].

After 12-h fasting, blood samples were collected. 
Serum lipid levels (TC, LDL-C, HDL-C, and TG) were 
measured by enzymatic method (using kits from Pars 
Azmoon Co., Iran) [52]. The level of ghrelin and leptin 
were measured by the ELISA method (Bioassay Technol-
ogy Co, China, and Germany) [53]. TAC measurement 
evaluating the overall antioxidants capacity in the body 
was measured by spectrophotometry and SOD levels 
which showes enzymatic antioxidant activity [54] was 
assessed using colorimetry methods (Cayman Chemi-
cal Company, USA) based on the conversion of xanthine 
oxidase to xanthine and O2 into uric acid and hydrogen 
peroxide to produce superoxide ions. Then SOD from the 
analyzed serum samples decomposes the superoxide ions 
in the reaction mixture. The results were measured spec-
trophotometrically and expressed as U/mL.

PRAL
(

mEq∕day
)

= 0.4888 × protein
[

g∕day
]

+ 0.0366 × Phosphorus
[

mg∕day
]

− 0.0205 × Potassium
[

mg∕day
]

− 0.0125 × calcium
[

mg∕day
]

− 0.0263 ×magnesium
[

mg∕day
]

.

IL-18, PTX3, and PGF2α showing a pro-inflamma-
tory status in the body were measured using the ELISA 
method (Shanghai Crystal Day Biotech Co., Ltd). The 
sensitivity of IL-18 and PTX3 ELISA kits was 28 ng/ l 
and 0.05 ng/ml, respectively. Moreover, Serum ghrelin 
and leptin levels were measured by ELISA method (Bio-
assay Technology Co, China and Mediagnost, Germany, 
respectively).

Assessment of the atherogenic index of plasma (AIP) 
and the lipid ratio
The atherogenic index of plasma (AIP) was calculated 
using the logarithmic ratio of (TG to HDL-C). Further-
more, the lipid ratio was computed as follows: Castelli’s 
Risk Index (CRI – I) = TC/ HDL – C, CRI - II = LDL – C/
HDL – C, atherogenic coefficient (AC) = (TC - HDL – 
C)/ HDL – C [55].

Genotyping
Genomic DNA was isolated from whole blood by the 

salting-out protocol [56]. Polymerase chain reaction 
(PCR) was used for genotyping the ApoA2–265 T > C, 
performed by 8% polyacrylamide gel electrophoresis. 
Zip Nucleic Acids (ZNA) probes was used for increas-
ing its stability and melting temperature and genotyping 
the 265 T > C changes of Apolipoprotein A2 gene [10, 57]. 
The promoter region of the ApoA2 gene containing the 
polymorphism has been amplified by two pairs of prim-
ers, upstream primer 5′CAT GGG TTG ATA TGT CAG 
AGC-3′ and downstream primer 5′ TCA GGT GAC 
AGG GAC TAT GG 3′.

Statistical analysis
The Kolmogorov–Smirnov test was done to assess the 
normality of the data. NEAP and PRAL scores were cat-
egorized into three tertiles based on the distribution of 
individuals. ApoA2–265 T > C polymorphism genotypes 
were considered as T-allele carriers (TT/TC) compared 
to the CC genotype. The Independent T-test was used 
for comparison of the clinical characteristics according 
to ApoA2 polymorphism (Table  1). The characteristics 
across the quartiles of NEAP and PRAL were compared 
using the ANOVA (Table  2). We analyzed the interac-
tion between NEAP/ PRAL and ApoA2–265 T > C on 
BMI, WC, TC, Ghrelin, and Leptin using generalized 
linear models (GLM) in both crude and adjusted mod-
els. The models were adjusted for age, physical activity, 
sex, smoking, alcohol, energy intake, alcohol, lipid, and 
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glucose-lowering medications (Fig. 1). Statistical analyses 
were done using SPSS 16.0 software (SPSS).

Results
Associations between cardio‑metabolic markers 
and ApoA2–265 T > C polymorphism
A total of 727 patients with T2DM participated in this 
study. The frequency overall prevalence of rs5082 geno-
types was 63.82 and 36.17% for T-allele and C-allele 

respectively. The genotype distributions were within 
HWE (P-value > 0.05). Details of the biochemical vari-
ables between rs5082 genotypes are presented in Table 1. 
TG, Ghrelin, and hs-CRP concentrations were signifi-
cantly higher among C allele carriers than TT homozy-
gotes. However, TC/CC genotypes have lower PTX3 than 
TT homozygotes. Additionally, there were no signifi-
cant differences for other variables, according to ApoA2 
genotypes.

Table 1  Comparison of the clinical characteristics according to APOA2 polymorphism

Values are means ± SD Independent T. test (Pvalue*). BMI Body mass index, WC Waist circumference, EER Estimated Energy Requirement, TG Triglyceride, TC Total 
cholesterol, hs-CRP High sensivity c-reactive protein, TAC​ Total antioxidant capacity, SOD Superoxide Dismutase, IL18 Interleukin 18, PGF2α Prostaglandin F2α. 
Atherogenic Index of Plasma (AIP) = log (TG/HDL-C), Atherogenic Coefficient (AC) = (TC-HDL-C)/HDL-C, Castelli’s Risk Index II (CRI-II) = (LDL/HDL), Castelli’s Risk Index I 
(CRI-I) = (TC/HDL-C)

APOA2–265 T > C P value*

N TT = 289 (TC + CC) = 438

Age (year) 53.78 ± 6.76 54.26 ± 6.49 0.33

Alcohol (Yes) 8 (33.3%) 16 (66.7%) 0.36

Smoking (Yes) 53 (39.3%) 82 (60.7%) 0.24

BMI (kg/m2) 29.31 ± 4.65 29.39 ± 4.78 0.82

WC (cm) 92.19 ± 10.36 92.32 ± 10.72 0.86

Physical activity (MET min/week) 37.85 ± 5.54 37.74 ± 5.42 0.79

Total energy intake (kcal/day) 2519.08 ± 844.92 2526.81 ± 938.86 0.91

Protein (gr/day) 90.21 ± 34.16 90.33 ± 36.45 0.96

Carbohydrate (gr/day) 339.53 ± 138.03 345.15 ± 145.92 0.59

Total fat (gr/day) 103.02 ± 46.72 103.76 ± 48.45 0.83

Phosphor (mg/day) 1677.47 ± 620.64 1683.84 ± 605.14 0.88

Magnesium (mg/day) 511.84 ± 227.72 508.27 ± 223.94 0.82

Potassium (mg/day) 4278.43 ± 1619.34 4343.19 ± 1732.50 0.6

Calcium (mg/day) 1153.31 ± 424.16 1168.80 ± 434.83 0.62

EER.(Men) 2600.70 ± 282.01 2572.46 ± 275.94 0.41

EER.(Women) 2020.54 ± 181.43 2022.1028 ± 183.50 0.93

NEAP (mEq/day) −9.01 ± 0.26 −9.03 ± 0.24 0.26

PRAL (mEq/day) −10.89 ± 21.37 −11.43 ± 22.54 0.74

TC (mg/dl) 203.45 ± 70.5 196.04 ± 72.29 0.21

HDL-C (mg/dl) 52.67 ± 11.02 53.77 ± 13.72 0.52

LDL-C (mg/dl) 111.6 ± 34.64 109.61 ± 76.36 0.70

TG (mg/dl) 184.89 ± 104.70 185.43 ± 109.28 < 0.001*
Ghrelin (ng/ml) 2.16 ± 0.83 2.44 ± 1.48 0.02*
Leptin (ng/ml) 24.51 ± 14.04 25.18 ± 14.71 0.73

hs-CRP (mg/l) 1.82 ± 1.23 2.48 ± 1.58 0.006*
TAC (g/dl) 2.51 ± 0.56 2.45 ± 0.56 0.53

SOD (U/ml) 0.14 ± 0.04 0.14 ± 0.04 0.29

IL-18 (pg /ml) 247.68 ± 33.83 249.36 ± 29.16 0.73

PGF2α (pg/ml) 71.60 ± 5.92 73 ± 6.19 0.16

PTX 3 (ng/ml) 2.81 ± 0.45 2.52 ± 0.46 < 0.001*
AIP 0.49 ± 0.24 0.48 ± 0.24 0.87

AC 3 ± 1.6 2.85 ± 1.77 0.23

CRI-II 2.08 ± 0.65 2.07 ± 0.67 0.93

CR-I 4 ± 1.6 3.85 ± 1.77 0.23
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Association between cardio‑metabolic markers and NEAP 
and PRAL
The basic information of diabetic patients between 
the NEAP and PRAL groups is presented in Table  2. 
All patients were divided into three groups, based on 
their NEAP and PRAL scores. Patients in the third ter-
tiles of NEAP and PRAL had higher total energy intake 

(p < 0.001). Regarding PRAL, patients in the last tertile 
were more likely to have lower activity (P = 0.002) and 
more adherence to PRAL reduced HDL-C (p = 0.003). 
There was a significant difference in EER across the 
NEAP tertiles. Men in the last tertiles of NEAP had more 
EER, compared to the first tertiles of NEAP. There were 
no significant associations found regarding other basic 

Table 2  The association between metabolic markers with NEAP and PRAL in T2DM patients

Data are presented as mean ± standard deviation (SD). Abbreviation: PRAL Potential renal acid load, NEAP Net endogenous acid production, BMI Body mass index, 
WC Waist circumference, HDL-C High density lipoprotein cholesterol, LDL-C Low density lipoprotein cholesterol, CH Cholesterol, TG Triglyceride, hs-CRP High sensivity 
C-reactive protein, PTX3 Pentraxin 3, IL18 Interleukin 18, TAC​ Total antioxidant capacity, SOD Superoxide dismutase, PGF2α ProstaglandinF2α. Atherogenic Index of 
Plasma (AIP) = log (TG/HDL-C), Atherogenic Coefficient (AC) = (TC-HDL-C)/HDL-C, Castelli’s Risk Index II (CRI-II) = (LDL/HDL), Castelli’s Risk Index I (CRI-I) = (TC/HDL-C) a 
Obtained from ANOVA

Tertile of NEAP Tertile of PRAL

T1 T2 T3 Pa T1 T2 T3 Pa

N 242 242 242 242 242 242

Age (year) 54.38 ± 6.29 53.77 ± 6.56 54.09 ± 6.89 0.59 54.45 ± 5.93 53.51 ± 6.97 54.26 ± 6.84 0.25

BMI (kg/
m2)

29.39 ± 5.01 29.13 ± 4.44 29.53 ± 4.74 0.64 29.29 ± 4.67 29.32 ± 4.97 29.47 ± 4.55 0.90

WC (cm) 92.05 ± 11.27 91.60 ± 9.88 93.13 ± 10.54 0.26 91.47 ± 10.57 92.05 ± 10.80 93.29 ± 10.32 0.15

Physical 
activity 
(MET min/
week)

38.09 ± 5.08 38.09 ± 5.58 37.14 ± 5.70 0.08 38.81 ± 5.7 37.27 ± 4.91 37.28 ± 5.62 0.002

Energy 
intake 
(kcal/day)

2403.72 ± 823.39 2457.27 ± 736.39 2710.80 ± 1084.58 < 0.001 2622.06 ± 876.52 2271.40 ± 693.04 2679.12 ± 1051.77 < 0.001

EER.(Men) 2548.14 ± 276.67 2553.32 ± 258.79 2635.04 ± 290.23 0.04 2553.65 ± 279.22 2552.15 ± 253.93 2631.33 ± 291.47 0.06

EER.
(Women)

2010.66 ± 189.44 2016.83 ± 161.13 2038.14 ± 193.95 0.41 2008.6 ± 175.19 2018.46 ± 176.05 2040.61 ± 197.73 0.32

HDL-C 
(mg/dl)

54.76 ± 13.44 52.35 ± 12.59 52.68 ± 11.73 0.07 55.45 ± 13.81 51.59 ± 11.86 52.76 ± 11.86 0.003

LDL-C 
(mg/dl)

110.18 ± 37.86 106.72 ± 35.41 105.96 ± 32.16 0.37 111.14 ± 39.10 105.39 ± 33.97 106.89 ± 32.88 0.18

TC (mg/dl) 195.70 ± 68.43 203.88 ± 75.79 197.76 ± 77.63 0.45 197.38 ± 70.67 200.93 ± 73.10 199.27 ± 78.34 0.87

TG (mg/dl) 184.54 ± 107.98 185.52 ± 106.84 185.97 ± 108.05 0.98 190.78 ± 109.63 177.41 ± 100.91 187.39 ± 111.41 0.37

Leptin (ng/
ml)

25.76 ± 13.61 25.48 ± 14.75 23.16 ± 15.26 0.48 25.54 ± 13.52 25.38 ± 15.49 23.56 ± 14.55 0.65

Ghrelin 
(ng/ml)

2.32 ± 1.02 2.32 ± 1.44 2.44 ± 1.47 0.83 2.16 ± 0.95 2.51 ± 1.45 2.42 ± 1.54 0.18

hs-CRP 
(mg/L)

2.31 ± 1.41 2.18 ± 1.59 2.24 ± 1.52 0.09 2.20 ± 1.41 2.28 ± 1.57 2.26 ± 1.52 0.96

PTX3(ng/
ml)

2.6 ± 0.48 2.66 ± 0.46 2.60 ± 0.49 0.72 2.56 ± 0.51 2.67 ± 0.44 2.61 ± 0.47 0.47

IL18(pg/
ml)

250.74 ± 37.67 245.75 ± 26.09 250.69 ± 27.55 0.61 248.61 ± 37.47 247.30 ± 27.18 250.55 ± 28.07 0.84

TAC(g/dl) 2.55 ± 0.53 2.45 ± 0.58 2.44 ± 0.56 0.54 2.61 ± 0.59 2.41 ± 0.52 2.42 ± 0.56 0.13

SOD(U/ml) 0.14 ± 0.03 0.14 ± 0.04 0.15 ± 0.04 0.40 0.14 ± 0.03 0.13 ± 0.04 0.15 ± 0.04 0.34

PGF2α(pg/
ml)

72.83 ± 6.05 73.25 ± 5.76 71.39 ± 6.56 0.25 72.80 ± 6.02 73.21 ± 5.85 71.46 ± 6.48 0.28

AIP 0.48 ± 0.24 0.49 ± 0.25 0.49 ± 0.25 0.74 0.49 ± 0.23 0.48 ± 0.24 0.49 ± 0.26 0.98

AC 2.75 ± 1.59 3.07 ± 1.82 2.91 ± 1.70 0.13 2.75 ± 1.66 3.06 ± 1.74 2.93 ± 1.71 0.14

CRI.II 2.06 ± 0.68 2.09 ± 0.67 2.06 ± 0.64 0.88 2.05 ± 0.7 2.09 ± 0.66 2.08 ± 0.64 0.85

CRI 3.75 ± 1.59 4.07 ± 1.82 3.91 ± 1.70 0.13 3.75 ± 1.66 4.06 ± 1.74 3.93 ± 1.71 0.14
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characteristics and biochemical parameters between the 
NEAP and PRAL groups.

Interaction between NEAP and PRAL with ApoA2–265 T > C 
on cardio‑metabolic markers
The interaction between ApoA2–265 T > C polymor-
phism and tertiles of NEAP and PRAL scores on cardio-
metabolic marker was shown in Figs. 1 and 2. Significant 
interactions were observed between NEAP and PRAL 
score and rs5082 SNP in terms of BMI, WC, TC, lep-
tin and ghrelin in both crude and adjusted models. This 
study revealed that those with the TC/CC genotype had 
higher BMI (P1-interaction =0.03, P2-interaction =0.04) 
(Fig.  1a), WC (P1-interaction =0.04, P2-interaction 

=0.04) (Fig. 1b), TC (P1-interaction =0.04, P2-interaction 
=0.03) (Fig.  1c), ghrelin (P1-interaction =0.02, 
P2-interaction =0.01) (Fig. 1d) and leptin (P1-interaction 
=0.06, P2-interaction =0.04) (Fig.  1e) when they con-
sumed diets higher on the NEAP index. Moreover, 
the highest tertiles of the PRAL, compared to the low-
est, showed increased in BMI (P1-interaction =0.004, 
P2-interaction =0.006) (Fig.  2a), WC (P1-interaction 
=0.03, P2-interaction =0.04) (Fig. 2b), TC (P1-interaction 
=0.02, P2-interaction =0.01) (Fig.  2c), ghrelin 
(P1-interaction =0.05, P2-interaction =0.04) (Fig.  2d), 
and leptin (P1-interaction =0.02, P2-interaction =0.03) 
(Fig.  2e), for TC/CC genotypes compare those with TT 
homozygotes. However, In − 265 T > C polymorphism, 

Fig. 1  Interaction effect between NEAP (mEq/d) and APOA2–256 (C > T) on a BMI, b WC, c TC, d Ghrelin, e Leptin. P 1 = P value with unadjusted 
(crude) model, P 2 = P value with adjustments for potential confounding factors including (age, physical activity, sex, smoking, alcohol, energy 
intake, alcohol, lipid and glucose-lowering medications). The lines indicate mean ± Error bar (SD). BMI: body mass index, WC: waist circumstance, TC: 
total cholesterol
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no significant difference was observed in other metabolic 
markers between the different groups of DAL intake.

Discussion
For all we know, this study is the first attempt to inves-
tigate the interplay effect of NEAP, PRAL, and ApoA2–
265 T > C on cardio-metabolic markers in individuals 
with T2DM. Based on findings, C carriers had signifi-
cantly high TG, ghrelin, and hs-CRP, and lower PTX3 
versus TT homozygous. Moreover, those with less DAL 
had better HDL-C levels. The results of the current study 
demonstrated that ApoA2–265 T > C polymorphism may 
alter the effect of the DAL on BMI, WC, TC, ghrelin, and 
leptin. In particular, C carriers had the highest mean of 

BMI, WC, TC, ghrelin, and leptin when placed in top 
tertiles of NEAP and PRAL. The locus on the 1q21-q23 
chromosome relates to ApoA2 which substitution of 
T to C at 265 bp before the ApoA2 gene transcription 
forms ApoA2–265 T > C polymorphism. The -265 T > C 
is mostly notified between the variety of SNPs of the 
ApoA2 gene, which is associated with reduced serum 
ApoA2 levels [58, 59]. It has been stated that this reduc-
tion might be the leading cause of elevated hs-CRP in 
C carriers [60–62]. Consistent with our findings, Basiri 
et al. reported a highly significant level of ghrelin in CC 
homozygous [63]. Ghrelin is known as an orexigenic and 
appetite hormone, thereby, a high serum level of ghre-
lin was expected in C carriers against TT homozygous. 

Fig. 2  Interaction effect between PRAL (mEq/d) and APOA2–256 (C > T) on a BMI, b WC, c TC, d Ghrelin, e Leptin. P 1 = P value with unadjusted 
(crude) model, P 2 = P value with adjustments for potential confounding factors including (age, physical activity, sex, smoking, alcohol, energy 
intake, alcohol, lipid and glucose-lowering medications). The lines indicate mean ± Error bar (SD). BMI: body mass index, WC: waist circumstance, TC: 
total cholesterol



Page 8 of 11Abaj et al. BMC Endocrine Disorders          (2022) 22:190 

The other finding of this study was the inverse associa-
tion between HDL-C concentration and tertiles of DAL 
indexes. The findings of various studies are a point of 
contention. Along with Kucharska et  al., different stud-
ies suggested the same trend of HDL-C by increasing 
NEAP and PRAL scores [40, 41] which were in line with 
the result of the present study, however, some other con-
flicting results were presented in previous studies [42, 
64–66] which further investigations required to give 
insight into the relationship between HDL-C concentra-
tion and DAL. The interplay effect of the genotypes with 
DAL has not been assessed so far, nevertheless, the inter-
action effect of the polymorphism with dietary intake on 
the aforementioned markers was checked in several stud-
ies. Besides, multiple studies considered the association 
of those markers with DAL. Based on findings of previ-
ous studies, CC homozygous with a greater intake of n-3 
PUFA tend to have a decreased level of IL-18 and hs-CRP 
whereas higher intake of saturated fatty acids was related 
to increased BMI, LDL-C, and LDL-C to HDL-C ratio 
[44, 45, 67].

The findings on the interplay effect of ApoA2–
265 T > C and DAL on obesity markers were in line with 
various studies. The study conducted by Murakami 
et  al. obtained a marginally significant relationship of 
DAL with WC [68]. Higher PRAL and NEAP scores 
linked with increased BMI through Farhangi et  al. 
findings [42]. Moreover, a greater odds of obesity was 
reported through median and quartiles of NEAP [43, 
65, 69]. This might be explained by the association of 
a western dietary pattern containing a high amount of 
refined grains, red meats, and eggs with obesity [70, 
71]. Additionally, metabolic acidosis promotes mus-
cle mass loss by downregulating protein synthesis and 
developing proteolysis in terms of either ubiquitin-
proteasome system or IGF-1 signaling alterations [72]. 
Furthermore, C allele carriers had a high consumption 
of red meat products in this study. On the one hand, 
the relationship between red meat consumption and 
DAL has been revealed in different studies [35, 73, 74]. 
On the other hand, it has been remarked that red meat 
consumption exacerbates a pro-inflammatory state 
and is consequently associated with a high BMI and 
WC [75–78]. Adding to this, C carriers in the current 
study consumed more added sugars than others. Sev-
eral studies suggested the association between added 
sugars and elevated inflammatory markers e.g. hs-CRP 
[79, 80]. Notably, elevated pro-inflammatory markers 
were also observed in obese adults in multiple studies 
[81]. On top of that, various studies have reported an 
augmented risk of obesity in CC homozygotes hardly by 
consumption of high amounts of saturated fatty acids 
and they are more vulnerable to consuming more food, 

particularly more high-fat and high-protein foods that 
manifest a western dietary pattern [15, 21, 44, 82, 83]. 
Studies proposed that these subjects had up-regulated 
methylation at cg04436964, close to ApoA2 gene, 
versus T carriers which linked with down-regulated 
ApoA2 expression [84] that might be a justification for 
obesity trait by gene-diet interaction.

The current findings also demonstrated CC homozy-
gotes had an increased level of TC when placed in the top 
tertile of NEAP/PRAL. It was noted that subjects with a 
low score of DAL or adherence to a DASH/plant-based 
diet tend to have dropped TC levels in several studies 
[68, 85–87]. It is noteworthy to point out the high cor-
respondence between low DAL and DASH/plant-based 
diets [42, 88, 89]. Reducing SFA intake by decreasing 
meat-derived protein consumption – with the potential 
of intensifying inflammatory responses- might clarify the 
decreased level of TC through low adherence to DAL. 
Moreover, a high oxidative stress level, which could be 
a determiner of inflammation, was correlated positively 
with high TC [90–92].

Regarding the hormones, the plasma levels of leptin 
and ghrelin were affected by the interplay effect of the 
polymorphism and DAL. CC homozygotes had the high-
est level of leptin and ghrelin by adherence to DAL. Con-
sistent with the findings, the plasma level of leptin was 
lower in those who adopted with vegetarian dietary pat-
tern compared with non-vegetarians [93, 94]. As men-
tioned before, red meat consumption promotes diet 
acidity and inflammatory responses. A linkage between 
high PRAL or NEAP scores with an increased hs-CRP 
was reported previously [95]. This association could be 
explained by metabolic acidosis which might contrib-
ute to the initiation of the inflammatory responses by 
provoking tissue damage [96]. Hs-CRP is also positively 
linked with leptin. Leptin is secreted by the adipose tissue 
and adipocytes are one of the main sources of hs-CRP 
secretion which leptin could intensify the production of 
hs-CRP as well [97–99]. Furthermore, obesity as a result 
of greater energy intake is associated with an elevated 
level of leptin. With respect to ghrelin, it has been intro-
duced as an effective anti-inflammatory hormone by 
numerous investigations [100]. Accordingly, ghrelin level 
increased expectedly in C carriers due to the elevation of 
hs-CRP to downregulate the inflammation.

Despite the novelty of the findings, the current study 
had some limitations. Primarily, this cross-sectional 
study did not measure the ApoA2 serum concentration 
and insulin. Furthermore, utilizing the FFQ for dietary 
intake evaluation has potentially recall bias along with 
over- or under-report of participants. Conclusively, a die-
tary pattern with a high acid load interacts with ApoA2 
genotypes and could significantly impact BMI, WC, TC, 
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leptin, and ghrelin. These findings warrant confirmation 
in high-quality interventional studies.

Conclusion
Based on the findings of this study, the ApoA2 polymor-
phism may be associated with CVD risk factors in T2DM 
patients with high dietary acid indices, such as NEAP and 
PRAL. This finding suggests that the ApoA2–265 T > C 
(TC + CC) allele may exacerbate the CVD risk posed by 
elevated NEAP and PRAL levels. This is important for 
clinical diagnosis and gene-based treatment.
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