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Investigation of the levels of circulating
miR-29a, miR-122, sestrin 2 and
inflammatory markers in obese children
with/without type 2 diabetes: a case
control study
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Abstract

Aim: The present work investigated serum levels of miR-29a, miR-122 and sestrin2 in obese children with/without
type-2-diabetes mellitus (T2DM), and their correlations with inflammatory, metabolic and anthropometric
parameters.

Methods: The study included 298 children, divided into: G1 (control, n = 136), G2 (obese without diabetes, n = 90)
and G3 (obese with T2DM, n = 72). Metabolic and anthropometric parameters, miR-29a, miR-122 relative
expressions, and sestrin2, high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor-α
(TNF-α) levels were measured by their specific methods. The data was processed and analyzed by SPSS V.26 using
the corresponding tests. After testing the variables’ normality, Kruskal–Wallis one-way-ANOVA, Spearman
correlations coefficient were used.

Results: Significant higher serum miR-29a, miR-122, IL-6, hsCRP and TNF-α and lower sestrin2 levels were found in
G2 and G3 than G1 and in G3 than G2 (p= > 0.001 for all). Especially in G3, miR-29a and miR-122 levels correlated
positively while sestrin2 levels correlated negatively with waist circumference and BMI percentiles, serum levels of
LDL-cholesterol, triacylglycerol, total cholesterol, HbA1c%, glucose, insulin, c-peptide, homeostatic model
assessment-insulin resistance (HOMA-IR), IL-6, hsCRP and TNF-α.
Conclusion: The change in the serum miR-29a, miR-122 and sestrin2 levels in obese children with/without T2DM
may suggest a possible role of these biomarkers in the pathogenesis of childhood obesity and their accompanied
complications e.g. inflammations and T2DM. Also, further studies are required to test drugs that antagonize the
action miR-29a and miR-122 or upregulate sestrin2 in the management of these cases.
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Introduction
Globally, the prevalence of childhood and adolescence
obesity has increased markedly in the last decade [1, 2].
About 30% of Saudi Arabia children were reported to be
obese or overweight [3, 4]. Obese children have a high
risk of developing many cardiac and metabolic complica-
tions such as type 2 diabetes mellitus (T2DM) either
during their childhood or, later during their adulthood
[5, 6].
Indeed, both obesity and T2DM are considered as sys-

temic inflammatory conditions [7, 8]. Obesity is associ-
ated with dysregulation in the adipocyte-derived
cytokines that leads to a generalized low inflammatory
condition and insulin resistance [9, 10]. In this regard,
many previous studies were conducted to understand
the pathogenesis of the obesity accompanied inflamma-
tions in order to prevent, control and manage them [7–
10].
MicroRNAs (miRs) are short non-coding sequences of

nucleotides that can modulate the process of adipogene-
sis and many of its related consequences [11]. Abnormal
expressions of microRNAs have been reported by many
previous studies in obese individuals with/without dia-
betes [5, 12]. Of these microRNAs, miR-29a was found
to correlate with insulin resistance and inflammatory pa-
rameters in obese adults with/without T2DM [13–15].
Also, miR-122 has been considered a good marker for
obesity and its related complications. It correlated posi-
tively with insulin resistance in subjects without diabetes
[16, 17].
Sestrin2 is an inducible protein that guards the cell

from stress injury and keeps up optimum cell functions,
metabolism, and endurance [18]. A decline in the cellu-
lar level of sestrin2 is associated with oxidative damage,
mitochondrial dysfunction, impaired glucose tolerance
and diabetes mellitus [18]. The investigations of sestrin2
levels in patients with metabolic syndrome (e.g. obesity
with/without T2DM) have revealed controversial results
[18–20].
As many of the previous studies have tested the levels

of miR-29a, miR-122 and sestrin 2 mainly in adults and
some of their results were controversial, the present
work aimed to measure these levels in obese children
with/without T2DM and compared them to those of
healthy non-obese controls. In addition, it investigated
the correlation of these levels with various inflammatory,
metabolic and anthropometric parameters.

Subjects and methods
About 1415 consecutive children who visited the pri-
mary health care units in Unaizah governorate, Qassim
area, Saudi Arabia between January and August 2019
approached for participation in the present study. A
number of 1117 of them were excluded according to the

exclusion criteria mentioned later. The eligible children
were 298; 195 males (65.5%) and 103 females (34.5%),
their ages were 9 to 15 years. All the study participants’
parents were acquainted with the study aim and gave a
written informed consent. Medical histories were col-
lected and examinations were done for all children. The
children’s waist circumference (WC) and body mass
index (BMI) percentiles were calculated and the child
was considered obese when his/her WC ≥ 90th percent-
ile and BMI ≥95 percentile for age and sex [3]. The par-
ticipants were divided into three groups; G1 (non-obese
healthy control group, n = 136), G2 (obese without dia-
betes group, n = 90) and G3 (obese with T2DM, n = 72).
Diagnostic criteria of cases with T2DM included a ran-
dom plasma blood glucose ≥200 mg/dl, or fasting blood
glucose of ≥126 mg/dl, or oral glucose tolerance test
with blood sugar ≥200 mg/dl hours post ingestion, or
glycosylated hemoglobin percentage (HbA1c%) > 6.5%
[21].
The G3 participants had been managed only by life-

style adjustments (those who had received any drug in-
terventions were excluded from the study). Also, exclu-
sion criteria included those who presented with T1DM,
genetic or endocrinal disorders, inflammatory, or any
other systemic illness [12].

Sampling and laboratory analysis
Five ml of fasting blood samples were withdrawn from
all children. One ml was used to measure HbA1c% in
the whole blood by glycated hemoglobin kit (Sigma–Al-
drich, St. Louis, MO, USA). The remaining portion was
left to be clotted then centrifuged for 10 min at 3000
rpm and the sera were collected in aliquots and stored
at − 80 °C till the assay. Fasting serum glucose levels
were measured by glucose oxidase activity assay kit (Col-
orimetric) (abcam Cat# ab219924). Colorimetric
methods were used to estimate serum total cholesterol
(Spectrum Diagnostic Egypt, Cat# 230003), HDL-C
(Spectrum Diagnostic Egypt, Cat# 266002), serum triac-
ylglycerol (Spectrum Diagnostic Egypt, Cat# 314003).
LDL-C was estimated by Friedewald formula [22]. Insu-
lin levels were measured by electrochemiluminescence
assay and C-peptide was measured by human C-Peptide
quantikine enzyme-linked immunosorbent assay (ELISA
Kit DICP00, R&D systems). Homeostasis model assess-
ment of insulin resistance (HOMA-IR) was calculated
after Matthew et al. [23].
The levels of sestrin2 in the serum were assessed by

the sestrin 2 ELISA method (MYBIOSOURCE, San
Diego, CA 92195–3308, USA, # MBS2024978) with de-
tection range between 0.15 ng/ml - 10 ng/ml. Human
interleukin-6 (IL-6) Solid Phase Sandwich ELISAKit
(R&D systems) was used to measure serum IL-6 levels
with assay range b 0.2–10 pg/ml. A latex-enhanced
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immunoturbidimetric assay (Diazyme Laboratories,
12,889 Gregg Ct, Poway, CA 92064, USA, Cataloge#
DZ135A-K) was used to measure the high-sensitivity C-
reactive protein (hsCRP) with detection range 0.20–20
mg/l. The TNFα levels were measured by ELISA consist-
ent with the accompanied protocol (Quantikine ELISA
Kit R&D Systems, Minneapolis, MN, USA).

RNA extraction
Circulating miRNAs were isolated and purified using
miRNeasy kit (ThermoFisher scientific, Ambion® Pure-
Link® miRNA Isolation Kit, USA, Cat# K157001). Briefly,
the sera were centrifuged in a spin cartridge for 1 min at
12000 rpm. Ethanol (96–100%) was added and mixed to
the flow through to a final concentration of 70%. Then,
500 μL sample was transferred to a second spin cartridge
and centrifuged again for 1 min at 12000 rpm. The miR-
NAs were bound to spine cartilage while the flow
through was discarded. The spin cartridge was then
washed with 500 μL wash buffer mixed with ethanol
(prepared by adding 40 ml 96–100% ethanol to 10ml
wash buffer) then centrifuged for 1 min at 12000 rpm
(this step was repeated once). The spin cartridge was
then centrifuged at the maximum speed for 1 min to
eliminate any residual wash buffer. The miRNAs were
eluted with 50–100 μL RNase-free water then incubated
at room temperature for 1 min. The purified miRNAs
were stored at − 80 °C till being used [24].

Complementary DNA (cDNA)
Reverse transcription was done cDNA RT Kit (Applied
Biosystems, Foster City, CA, USA, Cat. No: 438814) ac-
cording to the manufacturers’. The miScript HiSpec Buf-
fer was used. The samples were diluted with RNase-free
water to even out the total amount of RNA. Twenty μL
reverse transcription reaction, 8 μL of the master mix,
12 μL of RNA template and RNase-free were mixed in
0.2 ml PCR tubes and incubated at 37 °C for sixty mi-
nutes then at 95 °C for five minutes in thermal cycler
(Applied Biosystems).

Real time polymerase chain reaction (qRT-PCR)
It was done using TaqMan® MiR RT Kit (Applied Biosys-
tems, Foster City, CA, USA). Two and half μL universal
master mix, 0.25 μL primer and probe set, 0.33 μL
cDNA, and 1.92 μL H2O were mixed to make a 5 μL re-
action volume. qRT-PCR was done at 50 °C for 2 min
and 95 °C for 10 min, followed by 40 cycles at 95 °C for
15 s and 60 °C for 1 min. The cel-miR-39 was used as an
internal control during the quantification using specific
stem-loop primers for miR-29a and miR-122 [5, 12].
The analysis of the results was performed using Se-

quence Detection Software version 2.3 (Applied Biosys-
tems). The difference in the expression levels of miR-29a

and miR-122 between samples was calculated using the
2-ΔΔCT method [5, 12].

Statistical analysis
The collected data was analyzed by SPSS (v26). The
Shapiro-Wilk test was used to evaluate the normality of
continuous variables. Kruskal-Wallis one-way-ANOVA
was used to compare them among the three studied
groups. The correlations between different studied con-
tinuous variables levels were tested by Spearman’s corre-
lations coefficient. A 2-tailed p < 0.05 was considered
statistically significant.

Results
Comparison of different variables in the 3 studied groups
The current study found significant high levels of miR-
29a, miR-122, IL-6, hsCRP and TNF-α in obese (G2)
and obese with T2DM (G3) groups compared to the
control (G1) group (Table 1) and in obese with T2DM
(G3) group compared to obese (G2) group. On the other
hand, the levels of sestrin 2 were significantly low in
obese (G2) and obese with T2DM (G3) groups com-
pared to the control (G1) group and in obese with
T2DM (G3) group compared to obese (G2) group (Table
1).

Correlations analysis
In the whole sample
The serum levels of miR-29a, miR-122, hsCRP, IL-6 and
TNF-α correlated positively, while serum sestrin2 levels
correlated negatively with WC percentiles and BMI per-
centiles, and serum levels of LDL-cholesterol, triacylglyc-
erols, HbA1c%, glucose, insulin, c-peptide and with
HOMA-IR. Also, the serum miR-29a and miR-122 levels
correlated positively with each other (Fig. 1A) and with
serum hsCRP, IL-6 and TNF-α levels while correlated
negatively with serum sestrin2 levels (Table 2, Fig. 2A
and B). On the other hand, serum sestrin2 levels corre-
lated negatively with serum levels of hsCRP, IL-6 and
TNF-α (Table 2).

In control group (G1)
The serum levels of miR-29a correlated positively with
serum levels of LDL-cholesterol, triacylglycerols, choles-
terol, HbA1c%, glucose, and insulin (Table 3). Its corre-
lations with the serum levels of miR-122 and sestrin2
were non-significant (Figs. 1B and 2C). The serum levels
of miR-122 correlated positively with WC percentiles
and BMI percentiles and with serum insulin levels while
negatively correlated with HDL-cholesterol levels (Table
3). Its correlation with serum sestrin2 levels was non-
significant (Fig. 2D). Serum sestrin2 levels correlated
positively with HDL-cholesterol. The serum levels of
hsCRP correlated positively with BMI percentile and
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Table 1 Comparison of different variables among G1, G2 and G3

Healthy control group
(G1; n = 136)

Obese group
(G2; n = 90)

Obese with type 2 diabetes group
(G3; n = 72)

Gender
n (%)

Male 88 (64.7%) 62 (68.9%) 45 (62.5%) a, ¶

Female 48 (35.3%) 28 (31.1%) 27 (37.5%) a, ¶

Age (years) 12.1 ± 1.3 12.2 ± 1.4 12.2 ± 1.2 ¶

WC percentile 72.3 ± 7.2 95.9 ± 2.9 96.1 ± 2.9 *

BMI percentile 79.1 ± 6.8 96.8 ± 1.5 96.7 ± 1.4 *

HDL-c (mg/dl) 41.2 ± 2.9 35.7 ± 8.5 34.0 ± 9.5 *

LDL-c (mg/dl) 120.4 ± 21.4 126.1 ± 25.6 132.4 ± 17.0

TAG (mg/dl) 107.8 ± 19.6 112.7 ± 21.3 142.4 ± 37.1

Cholesterol (mg/dl) 183.2 ± 21.6 184.4 ± 26.6 194.9 ± 21.1

Glucose (mg/dl) 81.7 ± 12.7 96.8 ± 20.6 106.5 ± 25.7 #

HbA1c (%) 4.4 ± 0.7 6.0 ± 1.8 7.9 ± 1.9 #

Insulin (μg/ml) 7.6 ± 1.7 10.2 ± 0.7 10.6 ± 1.2*

C-Peptide (ng/ml) 2.8 ± 0.4 3.0 ± 0.3 3.1 ± 0.3 ♣

HOMA-IR 1.5 ± 0.4 2.4 ± 0.5 2.8 ± 0.6 #

miR-29a R 1.5 ± 0.3 1.9 ± 0.2 2.3 ± 0.3 #

miR-122 R 1.6 ± 0.3 1.9 ± 0.6 2.6 ± 0.9 #

Sestrin2 (ng/mL) 5.8 ± 1.8 4.1 ± 2.6 2.9 ± 1.4 #

hsCRP (mg/dl) 0.8 ± 0.1 1.3 ± 0.1 1.4 ± 0.2 #

IL-6 (pg/ml) 1.8 ± 0.4 2.2 ± 0.8 2.7 ± 1.1 #

TNF-α (pg/ml) 1.1 ± 0.2 1.3 ± 0.1 1.6 ± 0.6 #

Unless otherwise indicated, the data is presented as mean ± Standard deviation
WC: waist circumference, BMI: body mass index, HDL-c: high density lipoprotein cholesterol, LDL-c: low density lipoprotein cholesterol, TAG: triacylglycerol, HbA1c:
glycosylated hemoglobin, HOMA-IR: Homeostatic model Assessment-Insulin resistance, miR-29a R: microRNA-29a relative expression, miR-122 R: microRNA-122
relative expression, hsCRP: high-sensitivity C-reactive protein, IL-6: interleukin 6, TNF-α: tumor necrosis factor alpha
aChi-square
¶ the p-values of G1 Vs. G2 Vs. G3, G1 Vs. G2, G1 Vs. G3 and G2 Vs. G3 were non-significant
* the p-values of G1 Vs. G2 Vs. G3, G1 Vs. G2, and G1 Vs. G3 were > 0.001 while G2 Vs. G3 were non-significant
# the p-values of G1 Vs. G2 Vs. G3, G1 Vs. G2, G1 Vs. G3 and G2 Vs. G3 were > 0.001
♣ the p-values of G1 Vs. G2 Vs. G3, G1 Vs. G2, G1 Vs. G3 and G2 Vs. G3 were (0.01, 0.02, 0.009 and 0.44, respectively)
The p-values of G1 Vs. G2 Vs. G3 for LDL-c (0.06), TAG (> 0.001) and Cholesterol (non-significant

Fig. 1 Correlations of microRNA-29a relative expressions and microRNA-122 relative expressions: (A) in the whole sample, and (B) in G1, G2
and G3
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with serum levels of IL-6 and TNF-α while negatively
correlated with the serum levels HDL-cholesterol. The
serum levels of IL-6 correlated positively with BMI per-
centile and with the serum levels of TNF-α (Table 3).

In obese group (G2)
The serum levels of miR-29a and miR-122 correlated
positively with WC percentiles, BMI percentiles,
HOMA-IR and with serum levels of glucose, hsCRP,
IL-6 and TNF-α (Table 3) and negatively with serum
HDL-cholesterol (Table 3) and sestrin2 levels (Fig. 2C
and D). Also, the serum levels of miR-122 correlated
positively with the serum levels of triacylglycerol, total
cholesterol and HbA1c% (Table 3). In addition, serum
levels of miR-122 and miR-29a correlated positively
with each other (Fig. 1B). Moreover, the serum levels
of hsCRP, IL-6 and TNF-α correlated positively with
WC percentiles, BMI percentiles, HOMA-IR and with
serum levels of glucose and negatively with serum
levels of HDL-cholesterol (Table 3). On the other
hand, serum sestrin2 levels correlated negatively with
WC percentiles, BMI percentiles, HOMA-IR and with
serum levels of glucose, hsCRP, IL-6 and TNF-α
while positively with serum levels of HDL-cholesterol
(Table 3).

In obese with T2DM group (G3)
The levels of serum miR-29a, miR-122, hsCRP, IL-6 and
TNF-α levels correlated positively, while serum sestrin2
levels correlated negatively with WC percentiles and
BMI percentiles, and serum levels of LDL-cholesterol,
triacylglycerols, HbA1c%, glucose, insulin, c-peptide and
with HOMA-IR (Table 3). Also, the serum miR-29a and
miR-122 levels correlated positively with each other (Fig.
1B) and with serum hsCRP, IL-6 and TNF-α levels
(Table 2). On the other hand, serum sestrin2 levels cor-
related negatively with the levels of miR-29a and miR-
122 (Fig. 2C and D) and with the levels of hsCRP, IL-6
and TNF-α (Table 3).

Discussion
The significant high levels of the miR-29a, miR-122, IL-
6, hsCRP and TNF-α and the low levels of sestrin 2 that
were found in obese children with/without T2DM em-
phasizes that chronic inflammation is a characteristic
feature of childhood obesity with/without T2DM [7–10].
Previous studies had reported that the excessive accu-
mulation of fat in the adipocytes leads to the activation
of the resident immune cells and initiates a chronic
immune-inflammatory process that results in the devel-
opment of adverse metabolic consequences [15]. Signifi-
cant increased levels of IL-6, CRP and TNF-α were

Fig. 2 Correlations between sestrin 2 levels and (A) miR-29a relative expressions in the whole sample, (B) miR-122 relative expressions in the
whole sample, (C) miR-122 relative expressions in G1, G2 and G3, and (D) miR-29a relative expressions in G1, G2 and G3
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found by many studies in obese participants compared
to the non-obese controls [7, 25, 26]. Also, increased
levels of TNF-α and IL-6 along with other proinflamma-
tory cytokines were found in obese children and adoles-
cents with insulin resistance and/or T2DM [25]. The
proinflammatory cytokines may induce insulin resistance
through unrestrained production of insulin receptor sub-
strate [26].
MicroRNAs play a pivotal role in the modulation and

progress of obesity related complications [15]. They have
a well-known impact on the oxidant-antioxidant balance,
lipid metabolism, and insulin action [27]. Also, they are
involved in the development of insulin resistance and
the development of T2DM through their effect on the
insulin signaling pathway [13, 28]. Moreover, micro-
RNAs act as fine-control signal regulators for inflamma-
tory processes through targeting the expression of the
pro-inflammatory and anti-inflammatory genes in the
immune cells [29].
In this regard the results of the current study are in

accordance with the results of the study conducted by
Pandey et al. [2011] who found an increased expression
of miR-29a in the db/db mice and this overexpression
attenuates the insulin action [30]. Also, they go with the
findings of Tang et al. [2017] who reported an ability of
miR-29a to enhance the production pro-inflammatory
mediators such as IL-6 by targeting the protein kinase
B/nuclear factor kappa beta pathway [14].
MiR-29a can downregulate the peroxisome

proliferator-activated receptor delta (PPAR δ) in skeletal
muscles, which decreases the expression glucose
transporter-4 (GLUT-4) and so the insulin dependent
glucose entry to the cell [28]. Also, it prevents the re-
pression of phospheneolpyruvare carboxykinase gene by
insulin resulting in enhanced gluconeogenesis and
marked increase in blood glucose levels [30]. Yang et al.
[2014] found that the diet rich in saturated fatty acids
resulted in an overexpression of miR-29a which led to a
repression in the insulin receptor substrate 1 (IRS-1)
and eventually to insulin resistance with decrease in cel-
lular glucose uptake. This repression occurs via the dir-
ect binding of the miR-29a to the 3′ untranslated
regions of IRS-1 mRNAs [31].
Contrary to the results of the present study, Iacomino

and Siani [2017], and Ortega et al. [2014] found a non-
significant difference in the miR-29a expression between
obese and normal weight individuals [11, 32].
Another microRNA studied in the current work is

miR-122. It is an abundant microRNA in the liver
and accounts for more than 75% of the total hepatic
microRNAs expression [33]. It regulates lipid metab-
olism (e.g. lipogenesis, cholesterol and VLDL synthe-
sis) through its action on hepatocyte nuclear factor
4α (HNF-4α) [33, 34].

The results of the current study are in agreement with
many of the previous studies. Yang et al. [2012] reported
that the downregulation in miR-122 induces the protein
tyrosine phosphatase 1β which phosphorylates and inac-
tivates HNF-4α resulting in insulin resistance [35]. Jones
et al. [2017] observed a positive correlation between
miR-122 and insulin resistance and the amount of sub-
cutaneous fat. They concluded that miR-122 might be a
good marker for obesity and its related metabolic conse-
quences [36]. Wang et al. [2015] found a 3.07-fold in-
crease in the serum levels of miR-122 of obese patients
when compared to healthy non-obese controls and
these levels correlated positively with the BMI, serum
levels of triacylglycerols, and HOMA-IR. Up on these
findings, they suggested a possible role of miR-122 in
the pathogenesis of obesity and insulin resistance
[37]. Ortega et al. [2010] reported significant high
levels of miR-122 in obese participants compared to
those with normal weight and these levels decreased
markedly after induction of weight loss surgically by
gastric bypass operation [38].
Also, the results of the present work are in accordance

with the results of Prats-Puig et al. [2013] who found
significant high levels of miR-122 in obese children com-
pared to non-obese children. They also observed signifi-
cant positive correlations between miR-122 levels and
BMI, WC, triacylglycerols, LDL and HOMA-IR [39]. In
addition, the results work in with the findings of de Can-
dia et al. [2017] who found a significant elevation of
miR-122 in patients with impaired glucose tolerance
compared to the healthy control group [40]. Moreover,
Willeit et al. [2017] revealed significant high levels of
miR-122 in adults with T2DM and these levels corre-
lated positively with BMI, WC, triacylglycerols, hsCRP
and HOMA-IR [41]. Indeed, miR-122 has been accused
in the pathogenesis of many aspects of metabolic syn-
drome such as T2DM, hypertension, atherosclerosis and
even, heart failure [42, 43].
The positive correlations between circulating miR-122

levels and IL-6, hsCRP and TNF-α agree with Song et al.
[2020] and Zhao et al. [2020] who concluded that miR-
122 controls many immune-inflammatory processes in-
cluding autophagy, programmed cell death and oxidative
stress [43, 44]. Also, go with Wang et al. [2019] who
found a significant decrease in the macrophages number
and the levels of TNF-α in miR-122 knockout mice [45].
Sesrtins are inducible proteins that protect the cell

during stress and inflammatory conditions by enhancing
the cellular energy production and stimulation of the
genome repair system [18, 46, 47]. Also, they get rid of
reactive oxygen species either directly by acting on per-
oxiredoxins (antioxidant enzymes) or indirectly by regu-
lating the expression of antioxidant genes (e.g. NrF2)
[46]. Moreover, sestrins control numerous points in
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cellular metabolism by their ability to activate the AMP-
dependent protein kinase (AMPK) and inactivation of
the mammalian target of rapamycin (mTOR) [18, 46,
48]. The inactivation of mTOR markedly decreases the
cellular proteins and lipids synthesis and improves the
insulin sensitivity by induction of phosphalidyl inositol-
3-kinase enzyme (PI3K) [46, 49].
The results of the current work agree with the results

of Mohany and Al Rugaie [2020] who found significant
lower levels of serum sestrin2 in patients with T2DM
than the healthy control group [50]. Also, they agree
with Sundararajan et al. [2020] who reported low serum
sestrins levels in patients with dyslipidemia and T2DM
and these levels correlated negatively with atherogenic
factors and the severity of atherogenic index [51]. More-
over, Nourbakhsh et al. [2017] found significant lower
levels of sestrin2 in obese than the non-obese partici-
pants [19]. Insulin upregulates intracellular sestrin2 con-
tent and decreases its degradation through PI3K/mTOR
signaling pathway [52]. Lack of normal cellular response
to insulin in obese children with T2DM might explain
the low sestrin2 levels and their negative correlations
with HOMA-IR.
The negative correlations that were found in the

present work between serum sestrin 2 levels and the
levels of miR-29a and microR-122 reveals the complex
nature of the pathogenesis of obesity, T2DM and their
accompanied inflammations.
On contrary to the results of the current work, some

previous studies reported significant high serum levels of
sestrin 2 in obesity with/without T2DM but still showed
significant positive correlations with BMI, serum levels
of insulin, and HOMA-IR [20]. Also, sestrin 2 in the
mice liver was found to be upregulated in obese mice
feed on high fat diet [18]. The present study couldn’t ex-
plain this inconsistency.
In conclusion, the change in the serum miR-29a, miR-

122 and sestrin2 levels in obese children with/without
T2DM may suggest a possible role of these biomarkers
in the pathogenesis of childhood obesity and their ac-
companied complications e.g. inflammations and type 2
diabetes mellitus.

Recommendation
Further studies are required to test the role of miRNAs
and sestrin 2 in the pathogenesis of obesity and T2DM
and their accompanied inflammation. To prevent these
inflammations and other obesity related complications,
drugs that antagonize the action miR-29a and miR-122
or upregulate sestrin2 levels should be tested.
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