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Abstract

Background: There are insufficient data in case of the potential association of habitual dietary L-arginine and the
risk of type 2 diabetes mellitus (T2DM) incidence. Here we aimed to examine the potential effect of dietary L-
arginine on the T2DM incidence.

Methods: For this cohort study, 2139 T2DM-free adults from the participations of Tehran Lipid and Glucose Study
(TLGS) were recruited. Follow up period was approximately 5.8 years. Daily intakes of protein and L-arginine were
estimated using a validated food frequency questionnaire with 168 food item. Hazard Ratios (HRs) and 95%
confidence intervals (CIs), adjusted for sex, age, smoking, diabetes risk score, physical activity levels, and total energy
intakes as well as carbohydrate, fiber, fats and lysine, were calculated for L-arginine as both absolute intake and its
ratio from total protein.

Results: Mean (±SD) age of the participants was 38.9 (±12.6) years and 54.6% were women. Mean (±SD) intake of
dietary protein and L-arginine was 77.2 (±22.4) and 4.05 (±1.50) g/d, respectively. An increased risk of T2DM (HR =
2.71, 95% CI = 1.20–6.09) was observed among participants with higher intakes of L-arginine (median intake of > 5.4
vs. 2.69 g/d). Total protein intake and the ratio of L-arginine to total protein intakes were not related to incidence of
T2DM in both crude and adjusted models.

Conclusion: We found that higher dietary L-arginine levels may increase risk of T2DM and it may have an
independent role in T2DM development.
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Background
L-arginine is a conditionally essential amino acid that in-
volved in the synthesis of proteins, creatine, polyamines,
agmatine, urea, and metabolism of proline and glutam-
ate in the body [1, 2]. The relative amount of L-arginine
in different dietary proteins is in a range of 3–15% [3];
usual daily intakes of the Arg has been estimated to be
4–6 g per day in healthy adults, which provide about

20% of plasma L-arginine flux [4]. L-arginine has
recently received more interest as a nitric oxide (NO)
precursor, a property has led to the widespread use of L-
arginine as a complementary therapy in various NO-
disrupted conditions [5, 6].
Short-term beneficial properties of L-arginine sup-

plementation in some pathologic conditions including
hypertension, hypertensive renal disease and cardio-
vascular disease have been investigated [7–9]. Several
studies suggested that L-arginine may be involved in
multiple NO-dependent pathways that affect the glu-
cose and insulin homeostasis [10, 11]. Beyond its
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effects through NO metabolism, L-arginine has direct
effect in stimulation of insulin secretion in diabetic
rats [12], and it was suggested that L-arginine stimu-
lated glucose-induced insulin secretion in mouse by
membrane depolarization, independently of NO, in
another observational study [13]. However, due to
lack of efficacy and safety of L-arginine supplementa-
tion in long-term period (e.g. increased risk of
mortality rate and myocardial infarction following 6
months of 9 g/d L-arginine supplementation) [14, 15],
along with undesired effects of L-arginine (e.g. infu-
sion of arginase activity and increased urea levels),
the dominant paradigm about beneficial effects of L-
arginine is under debate [16, 17]. In our previous
studies we showed that dietary intakes of L-arginine
were positively related to NO metabolites levels in
serum [18], and increased chance of chronic kidney
disease incidence [19], metabolic syndrome [20], and
coronary heart disease incidence [21].
Although there are several animal studies investigated

the effects of L-arginine supplementation on glucose and
insulin homeostasis, long-term effects of L-arginine in-
take from usual diet in human is unclear. To the best of
our knowledge, there is limited data in case of the asso-
ciation of habitual L-arginine intakes from diet and the
risk of T2DM, therefore, in this study we aimed to
evaluate the possible association of dietary L-arginine, as
both absolute intake and its ratio from total protein
intake, with the incidence of T2DM in a population-
based study.

Methods
Study population
This prospective cohort study was conducted using data
collected from the Tehran Lipid and Glucose Study
(TLGS). TLGS is an ongoing community-based cohort
study, in a sample in the district 13 of Tehran, Iran,
aimed to investigate and prevent non-communicable
diseases [22]. We recruited 3462 men and women from
the participants of the third phase of the TLGS, who had
completed dietary and demographic data.
Finally, after exclusion of subjects with T2DM diagno-

sis at baseline (n = 321), participants who had missing
data of anthropometrics, biochemical values and physical
activity (n = 63), and those with under- or over-report of
total energy intakes (< 800 kcal/d or > 4200 kcal/d) (n =
284), 2256 adults were remained and followed up to the
fourth and fifth TLGS examinations, ~ 3 years apart.
Mean period of follow-up was 5.8 years. Final analyses
were conducted on 2139 adults (971 men, 1168 women),
after exclusion of participants who had no follow-up
after the baseline examination (n = 117). The flow chart
of selection of study population is shown in Fig. 1. The
participants with lost to follow-up and missing data were
considered as non-responders; accordingly, the response
rate of the study was 92.2%.
The study protocol was approved by the ethics

research council of the Research Institute for Endocrine
Sciences, Shahid Beheshti University of Medical
Sciences. Moreover, written informed consents were
obtained from all participants.

Fig. 1 The flowchart of the study
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Demographic and anthropometric measures
Demographic data were conducted by the trained inter-
viewers, using standard questionnaires. Measurements of
demographic variables in TLGS have been reported else-
where in details [22]. Body weight and height of partici-
pants were measured using digital scales and a tape
meter, to the nearest 100 g and 0.5 cm, respectively. Sub-
jects were in a standing position, without shoes and
minimally clothed for anthropometric measurements.
Body mass index (BMI) was calculated as weight (kg)
divided by square of the height (m2). Furthermore, waist
circumference (WC) was measured to the nearest 0.1
cm, over light clothing, between the lower border of the
ribs and the iliac crest at the widest portion. WC was
measured using a soft measuring tape, with no pressure
to the body. Waist to height ratio (WHtR) was calcu-
lated as WC divided by height (cm).
To assess both systolic (SBP) and diastolic blood pres-

sure (DBP) of participants, two measurements of blood
pressure were taken, with at least a 30-s interval between
two measurements. There was a 15-min rest before
blood pressure measurements, and subjects were in the
sitting position. For this purpose, we used a standardized
mercury sphygmomanometer calibrated by the Iranian
Institute of Standard and Industrial Research. Final
blood pressure of participants was considered as the
mean of the two measurements.
To assess physical activity level of participants, the fre-

quency and time spent on light, moderate, high and very
high intensity activities, according to the list for com-
mon activities of daily life were asked over the past year.
We used metabolic equivalent hours per week (METs h/
week) to express physical activity levels.

Biochemical measures
Participants had a 12–14 h of overnight fasting before
biochemical measurements. Blood samples were drawn
between 7:00 and 9:00 AM. Fasting serum glucose (FSG)
and serum triglyceride (TG) were assayed using glucose
oxidase and glycerol phosphate oxidase, respectively.
The method used to measure FSG and TG was enzym-
atic colorimetric. High-density lipoprotein cholesterol
(HDL-C) was measured after precipitation of the apoli-
poprotein B containing lipoproteins with phosphotung-
stic acid. Analyses were performed using Pars Azmoon
kits (Pars Azmoon Inc., Tehran, Iran) and a Selectra 2
auto-analyzer (Vital Scientific, Spankeren, Netherlands).
Both inter- and intra-assay coefficients of variation of all
assays were < 5%.

Dietary assessment
Typical food intakes were assessed using a validated
168-item FFQ. The validity and reliability of the ques-
tionnaire have been previously evaluated [23]. The

intake frequencies for each food item during the past
year were asked on a daily, weekly, or monthly basis.
Then we converted the reported portion sizes in
household measures to grams [24]. To analyze the en-
ergy and nutrient contents of foods and beverages, we
used the US Department of Agriculture Food Com-
position Table, because the Iranian Food Composition
Table is incomplete, and has limited data [25]. To ob-
tain dietary total intake of L-arginine, the L-arginine
content of food items (mg/100 g of foods) were multi-
plied by the amount of daily intake of food items,
then the obtained values were summed up [18].

Definition of terms
A T2DM patient considered as a subject who met at
least one of the following criteria: (1) using anti-diabetic
drugs, (2) fasting serum glucose (FSG) ≥126 mg/dL, (3)
2-h post challenging glucose (2-hPCG) ≥200 mg/dL [26].
If they had at least one parent or sibling with T2DM, a
positive family history of diabetes was considered for
them. To calculate the diabetes risk score (DRS), we
summed up the points considered for each following
items: SBP (mm Hg) < 120 (0 point), 120 < SBP < 140 (3
point), SBP ≥ 140 (7 point); waist to height ratio (WHtR):
< 0.54 (0 point), 0.54–0.59 (6 point), ≥0.59 (11 point);
family history of diabetes (5 point); FSG (mmol/L): < 5
(0 point), 50–5.5 (12 point), 5.6–6.9 (33 point); TG/
HDL-C: < 3.5 (0 point), ≥3.5 (3 point) [27].

Statistical analysis
Mean and standard deviation (SD) values, and the fre-
quency (%) of baseline characteristics were compared
across tertiles of L-arginine intakes, using independent
analysis of variance or chi square test, respectively. Haz-
ard ratios (HRs) and 95% confidence intervals (CIs) for
the association between L-arginine intakes and L-
arginine to protein ratio in relation to incidence of
T2DM were estimated using Cox proportional hazards
regression models with person-year as the underlying
time metric. Cox models were adjusted for sex, age,
smoking, diabetes risk score, physical activity levels, and
total energy intakes as well as dietary carbohydrate, fiber,
fats and lysine.
The middle-time between the date of the first diagno-

sis of T2DM, and the most recent follow-up visit preced-
ing the diagnosis were considered as the event date for
T2DM cases. The difference between the calculated
middle-time date and the date at which the subjects en-
tered the study was considered as the follow-up time. In
case of the censored and lost to follow-up subjects, the
survival time was the interval between the first and the
last observation dates. Follow-up duration and person-
years were calculated using the measured survival time.
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All analyses were performed using IBM SPSS for
Windows version 20, with a two-tailed P value< 0.05
being considered significant.

Results
Mean (SD) age of the participants was 38.9 (12.6) years
and 45.4% were men. Mean (SD) BMI was 26.9 (4.7) kg/
m2 at baseline. A total of 143 cases of T2DM were iden-
tified over a median 5.8 years of follow-up. Mean (SD)
intake of dietary protein and L-arginine was 77.2 (22.4)
and 4.05 (1.50) g/d, respectively. There were no signifi-
cant differences between dietary intakes of L-arginine,
total protein and L-arginine/protein ratio in subjects
with or without T2DM (4.05 ± 1.5 g/d vs. 4.05 ± 1.51 g/d,
75.91 ± 25.95 g/d vs. 77.39 ± 27.56 g/d, 0.053 ± 0.006 vs.
0.053 ± 0.006, respectively).
Baseline characteristics of participants are shown in

Table 1. Participants in the highest compared to the
lowest intake of L-arginine were more likely to be youn-
ger (38.5 vs. 40.6 years, P = 0.006), and had higher phys-
ical activity (36.8 vs. 30.4 MET-h/week, P = 0.08). There
was no statistically significant difference in anthropo-
metric and biochemical values as well as diabetes risk
score across dietary intakes of L-arginine. Dietary intake
of carbohydrate, fiber and protein was significantly
increased with higher intakes of L-arginine, whereas
intakes of total fat decreased (P for all < 0.01).

Association between L-arginine intakes as well as diet-
ary protein and L-arginine to protein ratio with the inci-
dence of T2DM after a 5.8 y of follow-up are shown in
Table 2. In the crude model, there was no statistically
significant association between intakes of L-arginine and
risk of T2DM (HR = 0.83, 95% CI = 0.55–1.26, and HR =
1.06, 95% CI = 0.71–1.56, in the second and third tertile,
respectively). After adjustment of diabetes risk score,
physical activity, sex, age, smoking, total energy intakes,
and carbohydrates, fiber, fats, lysine and total protein in-
takes, the risk of T2DM significantly increased in the
highest tertile compared to the lowest tertile categories
of L-arginine intakes (HR = 2.71, 95% CI = 1.20–6.09).
Total protein and the ratio of L-arginine to total protein
intake were not significantly associated with risk of
T2DM (HR = 1.89, 95% CI = 0.99–3.60), in both crude
and adjusted models. It is notable that there was no sex
interaction between L-arginine and T2DM in our study.

Discussion
In the current prospective population-based study, we
showed a potential adverse effect of high L-arginine in-
takes (more than 5.4 g/d) from habitual diet in relation
to risk of T2DM, during 5.8 years of follow-up. Higher
intakes of L-arginine however were not a potential risk
for development of T2DM when it was considered in
the context of total protein intake, as L-arginine-to-pro-
tein ratio.

Table 1 Characteristics of the study population across tertiles of dietary L-arginine intakes

Dietary L-arginine

Tertile 1 Tertile 2 Tertile 3 P*

L-arginine (g/d)

Range < 3.31 3.31–4.45 > 4.45

Median 2.69 3.77 5.40

Age (y) 40.6 ± 12.8 39.4 ± 12.3 38.5 ± 12.6 0.006

Men (%) 35.1 45.6 55.5 0.001

Current smoker (%) 10.2 14.2 12.5 0.011

Physical activity (MET-h/week) 30.4 ± 45.0 33.7 ± 52.0 36.8 ± 57.0 0.086

BMI (kg/m2) 27.0 ± 4.8 26.8 ± 4.7 27.1 ± 4.7 0.448

FSG (mmol/L) 4.81 ± 0.47 4.80 ± 0.44 4.84 ± 0.47 0.186

2-hPCG (mmol/L) 5.36 ± 1.41 5.21 ± 1.31 5.28 ± 1.37 0.098

TG to HDL-C ratio 1.66 ± 0.2 1.65 ± 0.2 1.68 ± 0.2 0.680

Diabetes risk score 9.3 ± 10.0 9.1 ± 10.0 9.7 ± 10.1 0.564

Dietary intakes

Carbohydrate (% of energy) 57.0 ± 7.5 57.7 ± 6.5 58.1 ± 7.4 0.030

Fat (% of energy) 32.4 ± 7.5 31.3 ± 6.6 29.9 ± 6.6 0.001

Protein (% of energy) 12.9 ± 2.2 13.6 ± 3.1 14.5 ± 2.6 0.001

Total fiber (g/1000 kcal) 15.9 ± 6.9 16.5 ± 3.4 17.0 ± 6.8 0.001

L-arginine to protein ratio 0.051 ± 0.01 0.052 ± 0.01 0.054 ± 0.01 0.001

Data are mean ± SD unless stated otherwise (Analysis of variance and chi-square test was used for continuous and dichotomous variables, respectively)
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Mean dietary intake of L-arginine was 4.0 ± 1.5 g/d in
our population, with major dietary sources of grains and
meats. Although there is no recommended dietary allow-
ance for L-arginine [4], mean dietary intake of L-
arginine has been reported 4–6 g/d in different popula-
tion [28, 29]. Different dietary sources have 3–15% of L-
arginine, with highest amount of L-arginine for soy pro-
tein, peanuts, walnuts, and fish; whereas cereal proteins
are poor sources of L-arginine (3–4% of total amino
acids) [30]. Different dietary patterns among population
are responsible for a wide range of dietary intakes and
plasma concentrations of L-arginine worldwide [21, 30].
Limited data are available regarding the possible asso-

ciation of dietary L-arginine and the cardio-metabolic
outcomes. Low intakes of L-arginine (below the median
range of 3.8 g/d) has been reported to be associated with
the higher C reactive protein (CRP) levels, while the
highest level of L-arginine intake (> 7.5 g/d) increased
risk of high-CRP levels by 30% [29]. Also, higher dietary
intakes of L-arginine was associated with significantly
higher risk of coronary heart disease (CHD) incidence
(relative risk = 1.87, 95% CI = 1.06–3.29 for intakes of L-
arginine in a range of 3.86–4.65) [31]. L-arginine intake
from animal sources was also related to higher diastolic
blood pressure and increased risk of CHD events (hazard
ratio = 1.90, 95% CI = 1.03–3.58) [21]. In our previous
study, participants with higher intakes of L-arginine
from animal sources had significantly higher risk for

metabolic syndrome incidence (odd ratios =1.49, 95 95%
CI = 1.02–2.18) [20]. Similarly, subjects with the highest
amount of dietary animal-derived L-arginine, compared
to whom with the lowest intakes (2.57 vs. 1.05 g/d) had
significantly increased risk of chronic kidney disease
(relative risk = 1.54; 95% CI = 1.06–2.14); L-arginine in-
takes from animal sources were also associated with de-
creased estimated glomerular filtration rate and
creatinine clearance rate [19].
Patients with T2DM had higher plasma L-arginine

concentration (median = 9.74, inter-quartile range =
5.33–16.61 vs. median = 4.47, inter-quartile range =
3.07–6.70); L-arginine concentration was positively asso-
ciated with T2DM (odds ratio = 1.20, 1.17–1.23) [32]. A
10-year follow-up study also indicated that high levels of
L-arginine significantly increased risk of T2DM by 21%
(hazard ratio = 1.21, 95% CI = 1.07–1.37) [33]. A meta-
analysis demonstrated that plasma L-arginine concentra-
tion is positively related to elevated risk of T2DM
(pooled estimated relative risk = 1.19, 95% CI = 1.14–
1.25) [34].
The biological plausible mechanisms linking L-arginine

intake to risk of T2DM are not well documented. One pos-
sible explanation may be related to induction of arginase
activity by long-term high intakes of L-arginine [2, 17], that
has been suggested may contribute to the development of
T2DM and insulin resistance [35]. The elevated levels of L-
arginine is suggested to increase urea synthesis, because L-
arginine induces N-acetylglutamate synthase which further
activates carbamoyl phosphate synthetase-I (CPS-I) to start
urea cycle [32]. L-arginine may also decrease cellular uptake
of citrulline [36], interrupt recycling of L-arginine form cit-
rulline [17], and suppress endothelial NO synthase (eNOS)
expression and activity [37], resulting decreased eNOS-
derived NO and development of insulin resistance. On the
other hand, high-L-arginine intakes is suggested to be re-
lated with pathologic levels of NO metabolites [38–40],
possibly produced by inducible NO synthase (iNOS); higher
intakes of L-arginine were associated with higher serum
NO metabolites [18, 20], an independent risk factor of
cardio-metabolic diseases [38, 40, 41].
Further prospective studies are needed to more fully

determine the possible underlying mechanisms by which
high intakes of L-arginine increased risk of T2DM.
The population-based prospective setting of the

current study, and use of a validated FFQ to assess regu-
lar dietary intake are the main strength points of the
study. Due to low number of outcomes (n = 143), we
used the DRS in multivariate models, which allowed us
to not adding many variables that would lead to instabil-
ity of our models, and accounts for major T2DM con-
founders . However it had some limitations. First, we
had not data on serum levels of L-arginine to consider
in our analysis; however, an acceptable correlation was

Table 2 The risk of type 2 diabetes across tertile categories of
dietary L-arginine, dietary protein and L-arginine to protein ratio

Hazard Ratio (95% CI)

T1 T2 T3 P for trend*

L-arginine

Crude Ref. 0.83 (0.55–1.26) 1.06 (0.71–1.56) 0.430

Model 1 Ref. 1.00 (0.65–1.54) 0.95 (0.62–1.45) 0.816

Model 2 Ref. 1.44 (0.84–2.46) 2.72 (1.21–6.08) 0.019

Model 3 Ref. 1.44 (0.84–2.47) 2.71 (1.20–6.09) 0.020

Total protein

Crude Ref. 0.90 (0.60–1.35) 0.94 (0.63–1.40) 0.494

Model 1 Ref. 1.33 (0.83–2.12) 1.46 (0.94–2.27) 0.099

Model 2 Ref. 1.42 (0.84–2.39) 1.89 (0.99–3.60) 0.052

L-arginine to protein ratio

Crude Ref. 1.07 (0.70–1.64) 1.45 (0.97–2.16) 0.145

Model 1 Ref. 1.02 (0.64–1.61) 1.28 (0.84–1.95) 0.242

Model 2 Ref. 0.93 (0.58–1.50) 1.22 (0.78–1.90) 0.371

Hazard ratio and 95% confidence interval; Cox regression models were used
Model 1: Adjusted for sex, age, smoking, diabetes risk score and
physical activity
Model 2: additional adjustment for total energy intakes, dietary carbohydrate,
fiber, fat and lysine
Model 3: additional adjustment for total protein intake
P for trend test was performed by considering each ordinal score variable as a
continuous variable in the model
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observed between dietary L-arginine intakes and serum
L-arginine. Some inherent limitation points of observa-
tional studies including potential selection bias, informa-
tion bias in measuring L-arginine intakes as study
exposure, and non-differential misclassification of the
exposure also should be considered. Furthermore, there
are other potential confounding variables, including
some dietary factors, which could affect the association
of L-arginine and T2DM and were not included in our
adjusted models; since L-arginine is derived from differ-
ent food sources, other dietary factors occurring in the
same foods could also have affected the findings. Other
potential limitation of the present study is the possible
changes of dietary patterns during the follow-up period,
since we assessed the dietary information only at base-
line examinations; however previous observations in our
population indicates an acceptable stability of major
dietary patterns over the time.

Conclusion
Our findings from this prospective study indicated that
higher amount of dietary L-arginine may be potential
risk factor for development of T2DM. Considering the
increasing interest to ingestion of L-arginine as a popu-
lar dietary supplement, and also the limited data in case
of the potential association between dietary L-arginine
and cardio-metabolic outcomes especially T2DM, fur-
ther cohort studies are required to clarify the possible
association.
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