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intervals to screen patients with type 2
diabetes based on risk stratification
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Abstract

Background: The best HbA1c test interval strategy for detecting new type 2 diabetes mellitus (T2DM) cases in
healthy individuals should be determined with consideration of HbA1c test characteristics, risk stratification towards
T2DM and cost effectiveness.

Methods: State transition models were constructed to investigate the optimal screening interval for new cases of
T2DM among each age- and BMI-stratified health individuals. Age was stratified into 30–44-, 45–59-, and 60–74-year-
old age groups, and BMI was also stratified into underweight, normal, overweight and obesity. In each model, different
HbA1c test intervals were evaluated with respect to the incremental cost-effectiveness ratio (ICER) and costs per
quality-adjusted life year (QALY). Annual intervals (Japanese current strategy), every 3 years (recommendations in US
and UK) and intervals which are tailored to each risk stratification group were compared. All model parameters,
including costs for screening and treatment, rates for complications and mortality and utilities, were taken from
published studies. The willingness-to-pay threshold in the cost-effectiveness analysis was set to US $50,000/QALY.

Results: The HbA1c test interval for detecting T2DM in healthy individuals varies by age and BMI. Three-year intervals
were the most cost effective in obesity at all ages—30-44: $15,034/QALY, 45–59: $11,849/QALY, 60–74: $8685/QALY—
compared with the other two interval strategies. The three-year interval was also the most cost effective in the 60–74-
year-old age groups—underweight: $11,377/QALY, normal: $18,123/QALY, overweight: $12,537/QALY—and in the
overweight 45–59-year-old group; $18,918/QALY. In other groups, the screening interval for detecting T2DM was found
to be longer than 3 years, as previously reported. Annual screenings were dominated in many groups with low BMI
and in younger age groups. Based on the probability distribution of the ICER, results were consistent among any
groups.

Conclusions: The three-year screening interval was optimal among elderly at all ages, the obesity at all ages and the
overweight in 45–59-year-old group. For those sin the low-BMI and younger age groups, the optimal HbA1c test
interval could be longer than 3 years. Annual screening to detect T2DM was not cost effective and should not be
applied in any population.
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Background
The number of patients with type 2 diabetes (T2DM) is
expected to be close to 600 million worldwide by 2030.
The HbA1c test to detect new cases of T2DM in a
healthy population is one of the most effective ways to
prevent and start early treatment for type 2 diabetes;
however, the best frequency for HbA1c testing remains
unclear. Although multiple studies have tried to investi-
gate the optimal frequency for HbA1c testing, current
guidelines about test frequencies to screen type 2 dia-
betes patients in a healthy population still rely on expert
opinion.
Kahn et al. [1] suggested that 30- to 45-year-old people

are required to have 3- to 5-year interval screening on the
basis of cost effectiveness analysis. However, this study
does not consider the possibility of an incidence rate for
type 2 diabetes based on risk factors. Multiple studies have
reported that subjects with obesity are more likely to have
type 2 diabetes than people with a normal BMI [2–4]. In
addition to body mass index level, age also matters in the
development of type 2 diabetes. The prevalence of type 2
diabetes increases as people live longer, and the complica-
tion rate among older adults with type 2 diabetes is signifi-
cantly higher for both acute and chronic microvascular
and cardiovascular diseases than that among younger
adults with type 2 diabetes. People with a higher risk of
onset of type 2 diabetes seem to require screening at
shorter intervals than those with a lower risk [5, 6]. Previ-
ously, we reported and recommended that subjects with
obesity aged 30–44 should be screened every 2 years,
while those with a normal body mass index in the same
age group would not need screening for the next 10 years
because the paces of HbA1c progression are different
based on age and BMI [6]. These results considered only
HbA1c test characteristics and did not include economic
impact in determining the optimal interval for HbA1c
screening. People whose screening results were false posi-
tive may receive unnecessary treatment, and people whose
screening results were false negative may incur higher
treatment costs. When optimal screening intervals are in-
troduced based on patient risk stratification, it would be
possible to eliminate unnecessary tests as well as to
minimize the chance of failing to detect affected patients.
Our study aimed to determine the optimal HbA1c test

interval strategy to detect new type 2 diabetes mellitus
(T2DM) cases in a healthy population stratified by age
and body mass index (BMI), considering HbA1c test
characteristics and cost effectiveness.

Methods
We built a state transition model of screening results
and type 2 diabetes disease progression to simulate life-
time diabetes-related health care costs and QALYs. Our
target population comprised individuals who had no

history of T2DM or cardiovascular events. We stratified
the population into age categories of 30–44, 45–59 and
60–74 years old. For each age category, we also stratified
patients into BMI status as follows: underweight, BMI <
18.5; normal weight, BMI 18.6–24.9; overweight, BMI
25–29.9; and obesity, BMI ≥30 [7, 8]. In total, 12 stratifi-
cations were used to create the state transition models.
We used the same tree structure for all 12 models with
different parameter values. The tree structures in the
state transition model comprise three main branches
(Fig. 1), “screening results by HbA1c test”, “no screening
year” and “T2DM progression”. Screening result
branches consist of parameters: incidence of T2DM and
sensitivity and specificity of HbA1c testing to determine
how many individuals from the population go to the
T2DM progression branch. In the no screening year
branch, people are classified as the condition that was
determined in the screening results branch. For example,
if a person was categorized as false negative, they had a
higher complication rate while they were in the no
screening year because they technically missed a chance
for early detection and treatment. In the T2DM progres-
sion branch, people die or may experience complications
based on each relative risk. A first-order Monte Carlo
simulation (microsimulation) of a hypothetical cohort of
50,000 people was performed to estimate the lifetime ex-
pected costs and expected QALY. The cycle length of
the model was set to 1 year. A willingness-to-pay (WTP)
threshold of 50,000 USD per QALY gained was used as
the acceptable level for ICER, and an annual discount
rate of 2% was used to calculate both costs and benefits,
following the current guidelines [9]. The incremental
cost-effectiveness ratio (ICER) was estimated as an indi-
cator of cost effectiveness of the test interval using the
formula: ICER = (Cost interval_a – Cost interval_b)/(QALYd

interval_a – QALY interval_b). The TreeAge Pro 2016 (Tree-
Age Software, Williamstown, MA, USA) was used for
model construction and analyses.

Parameters in the state transition models
Screening results by HbA1c test
The sensitivity and specificity of the HbA1c test were
calculated in each population using real data from St.
Luke’s International Hospital, Tokyo. We used the same
data set and methodology to calculate sensitivity and
specificity when we recommended different intervals
based on risk stratification [6] (Table 1). The method-
ology has been described in detail elsewhere [10, 11].
Briefly, HbA1c was calculated to generate predicted
HbA1c by linear random effect models adjusted with
gender, age and baseline BMI. Sensitivity and specificity
were calculated by comparing the observed HbA1c value
and the generated predicted HbA1c value as the gold
standard.
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Cost
Direct costs estimated in this study include screening
cost and type 2 diabetes treatment. Indirect costs were
not considered in this study. We estimated the unit costs
of screening with the HbA1c test (including consum-
ables, staff time and laboratory processing costs) as USD
80.00. We had to assume the fee for type 2 diabetes
screening with HbA1c because medical cost for preven-
tion is not covered in Japan; thus, there was no official
price list for the type 2 diabetes screening test in Japan.
We estimated it by summing the cost for a T2DM pa-
tient with a stable glycemic condition who received a
routine HbA1c test followed by a doctor’s consultation.
For the treatment fee, we used published cost data for

T2DM. Fukuda et al. [12] reported detailed treatment
costs for T2DM as well as proportion rates for each
T2DM-related complication. In our model, we aggre-
gated to one treatment cost for any complication based
on the proportions of Japanese people experiencing
complications. We also estimated annual treatment fees
for false positive patients by summing nutrition educa-
tion and physical exercise education and assuming no
drug prescription fees.

Utility
We assumed the utility value to be that of full health
and set at 1. We assigned 0.785 utility for those with
T2DM without any complications based on a previous
review [13]. We calculated a single utility value for those
with T2DM with any complication based on multiple

studies. Fukuda et al. [12] thoroughly reported treatment
costs for patients with T2DM and the proportion of
T2DM-related complications using the Japan Medical
Data Center Claims Database. We first retrieved utility
values for each T2DM-related complication from previ-
ous studies and then weighted each utility value based
on the proportion reported to aggregate into one utility,
which represents the average utility value for patients
with T2DM with any complication (Table 2).

Risks from type 2 diabetes
The age-dependent mortality rate for people without type
2 diabetes was obtained from the life table reported by the
Ministry of Health, Labour, and Welfare in Japan [18]. We
assumed that people with type 2 diabetes receiving the ap-
propriate treatment would achieve the same mortality rate
as people without type 2 diabetes based on a recent study
[19]. The relative risks of mortality for patients with type 2
diabetes with and without complications were set to 5.22
and 2.61, respectively [15, 20].
The annual incidence of T2DM complications was set

to 0.014 based on a previous study [16]. Furthermore,
we assumed that patients receiving appropriate treat-
ment would experience fewer complications than those
receiving no treatment. There are no published compli-
cation rate data for patients with no treatment; thus, we
decided to retrieve data from the report, which com-
pared metformin therapy versus conventional therapy.
We treated conventional therapy as no treatment, so

Fig. 1 The tree structures in the state transition model of three different strategies for type 2 diabetes screening
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patients receiving appropriate treatment with metformin
therapy had a 0.78-fold lower complication rate [17].

Probabilistic sensitivity analysis (PSA)
The robustness of the model results was assessed the
model assumptions and parameter uncertainties. For this
purpose, deterministic and probabilistic sensitivity ana-
lyses (PSA) were used for each parameter shown in
Table 2. The PSA explored the uncertainties in the

model parameters by randomly sampling 1000 people
with 1000 iterations on each parameter distribution. We
calculated the cost, QALYs and ICERs from this sample.

Results
Table 3 shows each QALY, incremental QALY, cost, in-
cremental cost and ICER for 12 stratified groups based
on age and BMI level. The HbA1c test interval to detect
T2DM in a healthy population varies by age and BMI.

Table 1 Sensitivity and specificity rates applied to the state transition models

Age group BMI group Interval HbA1c sensitivity (%) HbA1c specificity (%)

30–44 Underweight (< 18.5 kg/m2) Annual ≒0.0 100.0

3 years 50.0 100.0

10 years 81.8 99.9

Normal (18.5–25 kg/m2) Annual ≒0.0 100.0

3 years 47.5 99.9

6 years 68.1 99.9

Overweight (25–30 kg/m2) Annual ≒0.0 100.0

3 years 54.5 99.7

4 years 57.8 99.6

Obese (< 30 kg/m2) Annual ≒0.0 100.0

2 years 37.5 99.1

3 years 62.2 98.6

45–59 Underweight (< 18.5 kg/m2) Annual ≒0.0 100.0

3 years 66.7 99.8

10 years 70.0 99.7

Normal (18.5–25 kg/m2) Annual ≒0.0 100.0

3 years 56.0 99.7

6 years 73.5 99.5

Overweight (25–30 kg/m2) Annual 2.5 100.0

3 years 61.1 99.1

4 years 66.8 99.0

Obese (< 30 kg/m2) Annual ≒0.0 100.0

3 years 62.0 98.0

4 years 71.4 98.0

60–74 Underweight (< 18.5 kg/m2) Annual ≒0.0 100.0

3 years 50.0 99.5

6 years 87.5 99.3

Normal (18.5–25 kg/m2) Annual ≒0.0 100.0

3 years 50.3 99.3

7 years 72.7 99.1

Overweight (25–30 kg/m2) Annual ≒0.0 100.0

3 years 52.3 99.1

5 years 64.5 98.7

Obese (< 30 kg/m2) Annual ≒0.0 100.0

3 years 60.0 97.5

4 years 70.0 97.5
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Three-year intervals were the most cost effective in
obesity at all ages —30-44: $15,034/QALY, 45–59: $11,
849/QALY, 60–74: $8685/QALY—compared with the
other two interval strategies. The three-year interval was
also the most cost effective in the 60–74-year-old
groups—underweight: $11,377/QALY, normal: $18,123/
QALY, overweight: $12,537/QALY—and overweight in
the 45–59-year-old group; dominant. In other groups,
the screening interval for detecting T2DM was found to
be longer than 3 years, as previously reported. Annual
screenings dominated in many groups with low BMI and
in younger age groups. Suggested screening strategies
for all groups are shown in the Table 4. According to
PSA, the results were consistent with the basic analysis
(Additional file 1). Based on the probability distribution
of ICER, the QALY does not show much difference
among any groups.

Discussion
According to our cost-effectiveness analysis results,
T2DM screening programs for healthy populations should
consider risk stratification for T2DM. The optimal interval
seems to vary from 3 to 10 years, and some groups do not
require the 3-year screening interval that current guide-
lines suggest. There were no groups that warrant annual
screening, which is required by Japanese law.
As we reported previously, HbA1c progression in the

high-risk group was remarkable, while HbA1c stayed at
the same level or plateaued in the low-risk group.
HbA1c progression in the lower risk group in the short
interval is often affected by noise, which is originally

possessed by HbA1c [6]. When deciding the appropriate
screening testing frequencies, we should consider how
well a screening program can distinguish true type 2 dia-
betes patients from true nondiabetic patients with the
lowest financial burden to public health. To achieve this,
health policies need to simultaneously integrate all influ-
ences according to patients’ risk factors, HbA1c test
characteristics and financial impact.
Annual intervals dominated for all age groups of

underweight and normal BMI individuals and the 30–
44-year-old overweight group. In other groups, annual
intervals did not dominated; however, annual intervals
were not warranted based on the ICER.
A 3–5 year monitoring interval suggested by Kahn

et al. [1] while providing good evidence for cost effect-
iveness, does not apply to those over 45 years old. Chen
et al. [21] concluded that a 5-year interval for all age
groups would be the most cost-effective strategy. Inter-
estingly, Hoerger et al. [22] concluded that the most
cost-effective strategy is targeted screening of 55- to 75-
year-old patients with hypertension. Moreover, Brateanu
et al. [5] suggested that the optimal interval for type 2
diabetes screening should be decided by patients’ risk
score regarding the cause of type 2 diabetes; they con-
cluded that patients in the highest risk group could be
rescreened after 8 months, while those in the intermedi-
ate and lowest risk categories could be rescreened be-
tween 3 and 5 years. Our study also supports that risk
stratification should be considered when deciding the
optimal interval for type 2 diabetes. To the best of our
knowledge, this study is the first to investigate the best

Table 2 Parameters used in the tree model

Items Type of distribution
of PSA

Point
estimate

Distribution parameters
for PSA

Ref

Cost
(USD)

Screening cost Gamma 100 α =27.3, λ =1/292

Annual treatment fee among T2DM patients without
complication

Gamma 3500 α =84,146, λ =1/3 [12]

Annual treatment fee among T2DM patients with complication Gamma 8000 α =26,540, λ =1/22 [12]

Annual treatment fee among false positive patients with no
medication

Gamma 1400 α =1752, λ =1/60 [12]

Discount rate – 0.02 – [14]

Utility Utility for healthy population – 1 [13]

Utility for T2DM patients without complication – 0.785 – [13]

Utility for T2DM patients with complication – 0.638 – [13]

Risk Mortality rate among healthy population Life Table – –

Relative risk towards mortality rate among T2DM patients with
complications

LogNormal 5.61 Log (mean) = 1.65, SE =
0.08

[15]

Relative risk towards mortality rate among T2DM patients
without complications

LogNormal 2.61 Log (mean) =0.95, SE = 0.14 [15]

Annual complication rate Beta 0.014 α =2.27, β =160.3 [16]

Relative risk towards complication rate among T2DM patients
with treatment

LogNormal 0.79 Log (mean) = −0.23, SE =
0.09

[17]
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interval for T2DM screening, considering both test char-
acteristics and cost effectiveness. We have previously
suggested optimal HbA1c test screening results based on
risk stratification of patients and test characteristics of
the HbA1c test. This time, we found that the results
could change when we integrated economic evaluation

as well as patient risk stratification and HbA1c test char-
acteristics. Patient risk stratification, HbA1c test charac-
teristics and economic impact on public health not only
should be used as the basis of health policy but also
should be integrated and evaluated to maximize the ef-
fectiveness of mass screening.

Table 3 Results for the cost effectiveness analysis (Monte Carlo micro-simulation 50,000 times)

Population Interval QALY Incremental
QALY

Cost
($)

Incremental
cost ($)

ICER ($/QALY)

Age BMI group

30–44 Underweight Annual 30.12 – 2467.16 – Dominated

3-year 30.16 0.01 963.10 557.19 93,898.79 (vs 10-year)

10-year 30.16 – 405.92 – –

Normal Annual 30.13 – 2489.28 – Dominated

3-year 30.15 0.01 1112.80 385.93 63,295.18 (vs 6-year)

6-year 30.14 – 726.86 – –

Overweight Annual 29.86 – 2894.63 – Dominated

3-year 29.97 – 2678.14 – Dominated

4-year 29.97 – 2477.31 – Dominant

Obese Annual 28.88 – 4313.80 – –

2-year 29.18 – 8965.05 – Dominated

3-year 29.19 0.31 8948.87 4635.07 15,034.02 (vs Annual)

45–59 Underweight Annual 23.54 – 1949.99 – Dominated

3-year 23.55 – 879.01 – Dominated

10-year 23.55 – 408.86 – Dominant

Normal Annual 23.45 – 2081.91 – Dominated

3-year 23.48 – 1445.89 – Dominated

6-year 23.49 – 1107.16 – Dominant

Overweight Annual 23.17 – 2763.11 – Dominated

3-year 23.20 – 2753.06 – Dominated

4-year 23.26 – 2908.66 – –

Obese Annual 22.27 – 3024.01 – –

3-year 22.66 0.4 7647.58 4623.57 11,849.71 (vs Annual)

4-year 22.63 – 7348.82 – Dominated

60–74 Underweight Annual 15.74 – 1325.15 – Dominated

3-year 15.77 0.02 651.84 198.73 11,377.06 (vs 6-year)

6-year 15.75 – 453.10 – –

Normal Annual 15.69 – 1379.50 – Dominated

3-year 15.72 0.02 1039.23 319.93 18,123.44 (vs 7-year)

7-year 15.70 – 719.29 – –

Overweight Annual 15.47 – 1481.22 – –

3-year 15.56 0.02 1829.22 275.64 12,537.81 (vs 5-year)

5-year 15.54 0.07 1553.58 72.36 1006.48 (vs Annual)

Obese Annual 15.01 – 1617.53 – –

3-year 15.23 0.22 3552.88 1935.34 8685.76 (vs Annual)

4-year 15.21 – 3363.21 – Dominated

Underlined intervals are found to be the most cost-effective strategies with willingness-to-pay threshold of $50,000. Units of costs, incremental costs and ICER is
in USD$
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As in many other studies, this study also includes
uncertainties in our models. All patients will receive
treatment once the screening test results are positive.
We estimated that patients with T2DM will live if ap-
propriate treatment is provided based on a previous
report. In the real world, there should be a certain
number of patients who do not visit clinics for treat-
ment even after they receive positive results by
screening tests. We estimated a lower complication
rate if patients received treatment (true positive) and
a higher complication and mortality rate if patients
did not receive treatment (false negative). It was im-
possible to obtain published data for patients who did
not receive treatment; thus, we had to retrieve data
from the report comparing new treatment regimens
versus conventional treatment regimens [17]. The
intention of our study is not to identify the best risk
stratification strategy. We stratified patients by age
and current BMI level; however, there is room for
consideration that BMI level in childhood should be
applied instead of current BMI level, which has been
reported to be more important for predicting the
cause of new type 2 diabetes in adulthood [23]. We
also did not consider due to data inaccessibility data
for family history and patient medical history such as
presence of prediabetes, hyperlipidemia and hyperten-
sion, which could be the candidate factors for robust
stratification.

Conclusions
Annual screening to detect T2DM was not cost effective
and should not be used for any population. The three-
year screening interval was optimal for all elderly popu-
lations, the obesity at all ages and the overweight 45–59-
year-old group. Among low BMI and younger age
groups, the optimal HbA1c test interval can be longer
than 3 years.
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