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Glycemic deviation index: a novel method
of integrating glycemic numerical value
and variability
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Abstract

Background: There are many continuous blood glucose monitoring (CGM) data-based indicators, and most of
these focus on a single characteristic of abnormal blood glucose. An ideal index that integrates and evaluates
multiple characteristics of blood glucose has not yet been established.

Methods: In this study, we proposed the glycemic deviation index (GDI) as a novel integrating characteristic, which
mainly incorporates the assessment of the glycemic numerical value and variability. To verify its effectiveness, GDI
was applied to the simulated 24 h glycemic profiles and the CGM data of type 2 diabetes (T2D) patients (n = 30).

Results: Evaluation of the GDI of the 24 h simulated glycemic profiles showed that the occurrence of hypoglycemia
was numerically the same as hyperglycemia in increasing GDI. Meanwhile, glycemic variability was added as an
independent factor. One-way ANOVA results showed that the application of GDI showed statistically significant
differences in clinical glycemic parameters, average glycemic parameters, and glycemic variability parameters
among the T2D groups with different glycemic levels.

Conclusions: In conclusion, GDI integrates the characteristics of the numerical value and the variability in blood
glucose levels and may be beneficial for the glycemic management of diabetic patients undergoing CGM
treatment.
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Background
Diabetic blood glucose disorders are mainly caused by
abnormalities in the average glycemic level and variabil-
ity, and the latter has been shown to independently
affect diabetics-related complications [1–4]. Clinical lab
indexes and fingertip blood glucose monitoring are
widely used to monitor blood glucose changes over a
certain period. Among the clinical glycemic parameters,
HbA1c concentration can be used to measure the aver-
age blood glucose level of individuals taken over 2 to 3

months, which is the “gold standard” to measure the
control of diabetes [5–7]. However, as a glycosylated
product of hemoglobin, the concentration of HbA1c is
affected by hemoglobin content, hemoglobin glycosyl-
ated rate, and erythrocyte clearance rate [8]. Addition-
ally, it also does not reflect actual blood glucose changes
and fluctuations, which limits its ability to measure gly-
cemic variability and hypoglycemia [9].
In recent years, digital diabetic management has been

regarded as a promising strategy, and commercial CGM
devices that can record up to 10–14 days of persistent
glycemic levels have been developed [10–12]. Along with
the development and prevalence of continuous glucose
monitoring systems (CGMS), it is predictable that
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indexes calculated using CGM data will have better fu-
ture application prospects. CGMS provides detailed
blood glucose changes [13], while indexes calculated
using CGM data are under development. Some indexes
evaluate a single feature of glycemic variabilities, such as
standard deviation of blood glucose (SDBG), mean amp-
litude of glycemic excursions (MAGE), or mean of daily
differences (MODD) [14–16]. In contrast, others, such
as the area under the curve (AUC), low blood glucose
index (LBGI) and high blood glucose index (HBGI), time
in range (TIR), focus on representing a specific kind
of glycemic exposure [8, 17, 18]. Although comprehen-
sive glycemic indicators have also been proposed, none
of them are as vital as the “gold standard” as to clinical
decisions. There has also been some controversy regard-
ing the integration of methods. For instance, M-value ar-
bitrarily selects R as the blood glucose reference value.
Simultaneously, the J-index presents the sum of ele-
ments heavily weighted towards hyperglycemia and per-
forms poorly for hypoglycemia [4, 19].
Moreover, the choice of glycemic characters and the

design of formula segmentation can have a crucial
impact on these types of glycemic indicators. We
found that indexes, such as the blood glucose risk
index (BGRI) [20], index of glycemic control (IGC)
[21], and glycemic risk assessment diabetes equation
(GRADE) [22], do not independently consider gly-
cemic variability. Additionally, BGRI and IGC do not
calculate blood glucose exposure time. There are
some glycemic metrics, such as continuous glucose
monitoring index (COGI), Q-score, and comprehen-
sive glucose pentagon (CGP), which cover glycemic
characters more comprehensively than others [23–25].
Due to the lack of comparable evidence and common
consensus, it is challenging to decide on the best-
integrated method to be applied for each type of pa-
tient [26]. On the other hand, glycemic parameters,
such as personal glycemic state (PGS) [27] and
GRADE, are used as the piecewise function, which
complicates its integration with other factors.
To develop a better method of comprehensively inte-

grating blood glucose abnormalities, an improved algo-
rithm of glycemic parameters has been proposed in this
study. We named it the glycemic deviation index (GDI),
which mainly integrates the major glycemic trend and
variability. Clinical practice was considered for the de-
sign process and derivation of formulas. Methods of
blood glucose scale transformation [28] and an automat-
ically adaptive weighted adjustment method were used
for GDI derivation. The duration of hypoglycemic
exposure was concerned for weighting. Further, we veri-
fied the effectiveness of GDI using the simulated 24 h
glycemic profiles and the CGM data of T2D participants.
This glycemic index may be a potential marker that can

be used to identify overall blood glucose conditions in
the future.

Methods
Subjects
Study participants were T2D inpatients at the Depart-
ment of Endocrinology at the Shandong Provincial Hos-
pital. The institutional Ethics Committee approved the
experimental protocol.
A total of 30 patients were enrolled. Patients with

secondary diabetes, acute infection, stress conditions,
severe organic lesions, acute diabetic complications,
pregnant diabetic women, and insufficient data were
excluded. The study population consisted of 13 males
and 17 females between the ages of 26 to 82. The
disease history of the patients ranged from less than
1 year to 20 years. Patient clinical characteristics are
presented in Table 1.

CGMS
The CGMS (Medtronic®, iPro2) was calibrated using a
minimum of four finger-prick blood glucose measure-
ments during each 24 h period. CGMS measures the
interstitial glucose level once every 5 min, and 864 re-
cordings were obtained over 72 h. The iPro2 is com-
posed of a CGM recorder, Sof-Sensor probe, and
analysis software (CareLink iPro software Plus 1.0) in
the range of 2.2 to 22.2 mmol/L. A previous study has
indicated that the high accuracy of the mean absolute
relative difference (MARD) of iPro2 is 9.9% for adults. In
comparison, that of the Clarke error grid analysis is
99.0% (4849 of 4897) for adults [29].

Laboratory tests
Fasting venous blood samples were drawn between 7.30
a.m. and 8.30 a.m. after 12 h or more of fasting. HbA1c
levels were measured through high-performance liquid
chromatography using a Tosoh HLC-723 G8. Addition-
ally, glycated albumin (GA) levels were determined

Table 1 Clinical characteristics of type 2 diabetes patients (n =
30)

Clinical Characteristics Total Results

Male(n%) 43

Age (years) 56.70 ± 14.60

History of diabetes (years) 8.43 ± 7.13

BMI (kg/m2) 25.00 ± 2.95

HbA1c [%(mmol/mol)] 8.99 ± 1.93

MBG (mmol/L) 10.03 ± 2.59

SDBG (mmol/L) 2.45 ± 0.98

Data are presented as mean ± SD unless stated otherwise. BMI Body mass
index, HbA1c Glycated hemoglobin, MBG Mean blood glucose, SDBG Standard
deviation of blood glucose
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following standard methods using a Beckman Coulter
AU5800 chemistry auto-analyzer. Fasting blood glucose
(FBG) was calculated as the mean value of the fingertip
FBG samples collected over 5–7 days and tested using
an i-SENS CareSens N glucometer.

Calculation of glycemic control parameters
Some glycemic control parameters, including mean blood
glucose (MBG), the large amplitude of glycemic excur-
sions (LAGE) [30], SDBG, MAGE, MODD, LBGI, HBGI,
continuous overlapping net glycemic action (CONGA)
[14], J-index and M-value, were computed using Python
3.7.0 programming. AUCH-L is the mean AUC above
7.8mmol/L minus the mean AUC below 3.9mmol/L over
3 days [31]. Both AUCH-L and the duration of the
hypoglycemic range were calculated using iPro2 software
(CareLink iPro Software Plus 1.0). The eHbA1c was cal-
culated in Microsoft Excel using the formula: eHbA1c =
3.38 + 0.02345 × 18 ×MBG (mmol/L) [32]. TIR, time
below range (TBR), and time above range (TAR) were
calculated based on their definitions [33].

Design and derivation of the formulas
This study used the mean glucose index (MGI) and the
standard deviation of the glucose index (SDGI) as the
two main GDI components to represent CGM de-
tected mean glucose level and its variability, respectively.
MG is a fundamental element of MGI, with values ran-
ging from 2.8 to 33.3 mmol/L based on the diagnostic
criteria of hypoglycemic coma [34] and hyperosmolar
coma of diabetic patients [35]. In comparison, the nor-
mal range for MG is 3.9–7.8 mmol/L, as given in basic
guidelines [9]. In general, at the same level of deviation,
the severity of hypoglycemia is higher than that of
hyperglycemia. Therefore, we applied a method that was
proposed by Kovatchev et al. to convert the blood glu-
cose range to a clinically symmetrical form [28]. The
transformation formula was used as follows, where the
MG was set as “x,” while “a” and “b” were constant
terms.

y1 ¼ ln xð Þ½ �a − b ð1� 1Þ
The functional form of y1 should meet the exponential

increase of the x value at a certain symmetrical point.
To ensure that y1 satisfies the following two criteria: 1)
the value range of x is symmetrical around a certain
point, 2) the target range of x is also symmetrical around
this point; the following equation was constructed:

ln 33:3ð Þa − b ¼ − ln 2:8ð Þa þ b
ln 7:8ð Þa − b ¼ − ln 3:9ð Þa þ b

The solution calculated using MATLAB was: a = −
0.801, b = 0.672. Inserting a and b into eq. 1–1 provided:

y1 ¼ ln xð Þð Þ − 0:801 − 0:672 ð1� 2Þ

Furthermore, to adjust the value range to occupy the
range of [0,10], and to meet the normal range at [0,1]
synchronously, the following formula was introduced
(Fig. 1a):

y2 ¼ 6:337 � y1j j þ 0:664ð Þ2 − 2:796
MGI ¼ y22

ð1� 3Þ

Next, to reduce the “neutralization” of hyperglycemia
on hypoglycemia, MGI was calculated in two steps. MG1

and MG2 represent the average of blood glucose in the
hypoglycemic and non-hypoglycemic periods separately,
respectively substituted into formula 1–3 for the calcula-
tion to be performed. The weighting coefficient “c” was
used to indicate duration in the hypoglycemic range
(percentage of readings below 3.9 mmol/L per 72 h). The
final formula of MGI was as follows:

MGI
0 ¼ c �MGI1 þ 1‐cð Þ �MGI2 ð1� 4Þ

The target range of SDG in this study was 0–1.4
mmol/L, based on previous studies, and the value range
was defined as 0–7.4 mmol/L [15, 36]. The degree of de-
viation of glycemic variability was represented as the
standard deviation of glucose index (SDGI). The SDGI
value was exponentially augmented after SDG crossed
over the normal threshold (Fig. 1b). SDGI was listed as
follows, where “z” represented the SDG, while “e” and
“f” were constant parameters:

SDGI ¼ ez þ f ð2� 1Þ
Simultaneously, the value at [0,10] should be satisfied,

and the normal range was [0,1]. Therefore, the following
equation was obtained:

e1:4 þ f ¼ 1
e7:4 þ f ¼ 10

The solution was solved as e = 1.375, f = − 0.562, and
these values were used in 2–1. This resulted in:

SDGI ¼ 1:375z − 0:562 ð2� 2Þ
Then, MGI’ and SDGI were merged, and the propor-

tions of both variables were adjusted using the adaptive
weighting method. In this manner, even if one value was
abnormal, and the other was normal, the abnormal value
would occupy the dominant position because the ranges
of MGI’ and SDGI’s were the same. The value range of
the final GDI formula was [0,10], while the normal value
range was [0,1], and “g” was the automatically adaptive
inertia-weighted coefficient.
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g ¼ MGI
0

MGI
0 þ SDGI

GDI ¼ g �MGI
0 þ 1 − gð Þ � SDGI

ð3� 1Þ

Theoretically, when the patients had a normal blood
glucose level, their GDI value was between 0 and 1. On
the other hand, hypoglycemia, hyperglycemia, and ab-
normal glycemic variability resulted in GDI values higher
than 1. The closer the GDI value was to 10, the worse
the glycemic control would be.

Data handling and statistical analysis
MATLAB 7.0 was used for formula derivations, and
SPSS 23.0 was used for statistical analyses. The measure-
ment data are presented as mean ± SD unless otherwise
indicated. A P value of < 0.05 was considered to indicate
statistical significance. Before one-way ANOVA was per-
formed, non-normally distributed variables based
Shapiro-Wilk testing were normalized using log-
transformation (FBG) and square-root transformation
(AUCH-L). When equal variance was not assumed
(HbA1c, MODD), the Brown-Forsythe test was applied
[37].

Results
Figure 2 shows the 4 profiles of CGM over 24 h simu-
lated under 4 typical glycemic conditions. Previous gly-
cemic parameters (MBG, SDBG, eHbA1c, TBR, TIR,
TAR) and novel parameters (MGI’, SDGI, GDI) were
listed in Table 2. MBG reflects the objective average gly-
cemic level, and SDBG reflects objective glycemic vari-
ability. eHbA1c was calculated using a method reported
previously to estimate HbA1c and was listed as the clin-
ical glycemic control reference of this study [32]. TBR,
TIR, and TAR are intuitive CGM metrics that have been
recommended by recent consensuses and have been
thoroughly researched. The minimum and maximum

glycemic level values were 3 mmol/L and 15mmol/L, set
for illustrative purposes only. Considering that postpran-
dial hyperglycemia is prevalent in type 2 diabetes pa-
tients and increases the risk of diabetic complications
[38, 39], Fig. 2a showed the fluctuating condition caused
by postprandial hyperglycemia. Figure 2b demonstrated
a matched high glycemic variability and average condi-
tions with that of Fig. 2a, but with nocturnal
hypoglycemia, common in diabetic patients under insu-
lin treatment [40]. In Table 2, although both A and B
showed high MBG and SDBG levels, the eHbA1c level
of B was lower since the deviation of hypoglycemia was
“neutralized” by hyperglycemia. However, the MGI’,
SDGI, and GDI values of B were higher than that of A,
using our method of overall deviation accumulation. Fig-
ure 2c simulated a condition in which the average blood
glucose level was the same as in Fig. 2a, and the only dif-
ference was the glycemic variability. The results pre-
sented in Table 2 showed that C had lower SDBG,
SDGI, and GDI values than A, even though the MBG,
eHbA1c, TBR, TIR, and TAR values were similar. Fig-
ure 2d represented normal daily glycemic change control
[41]. It showed a parallel normal glycemic variability as
C. Compared with D, MBG and MGI’ were higher in C
due to hyperglycemia, which also led to the rise of GDI.
The GDI of D was 0.09 and was within the normal range
of [0,1].
Given that GDI was designed to reflect the degree of

glycemic deviation comprehensively, it should contain
information on each glycemic characteristic separately at
the same time. To verify its characteristics, one-way
ANOVA and Brown–Forsythe test were used to exam
the ability of the GDI to distinguish between separate
glycemic control parameters. Using the quartiles of GDI
(1.2, 2.2, 2.9), we divided the 30 participants into four
groups based on their GDI score: normal (GDI ≤ 1), mild
(1<GDI ≤ 2), moderate (2<GDI ≤ 3), and severe (3<GDI).
Table 3 shows that the lower GDI values represent bet-
ter glycemic control than the higher values. The values

Fig. 1 Functional images of MGI (a) and SDGI (b). The definitional domain of MGI is [2.8, 33.3], while the definitional domain of SDGI is [0, 7.4].
The value domain of both functions is [0, 10]
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of the clinical glycemic parameters (HbA1c, GA, FBG),
average glycemic parameters (MBG, AUCH-L), and gly-
cemic variability parameters (SDBG, MAGE, MODD)
became significantly different as the GDI value in-
creased. We also collected data on the average incidence
of diabetic complications (diabetic retinopathy, diabetic
nephropathy, diabetic neuropathies, and diabetic heart
disease) for all 4 categories shown in Table 3. The

results showed that the presence of diabetic complica-
tions increased as the GDI value increased.

Discussion
This study aimed to develop a comprehensive index to
assess the degree of deviation of blood glucose from nor-
mal levels. Therefore, a function containing the average
glycemic level and glycemic variability was constructed
and named as the GDI. It was composed of two main
functions, MGI and SDGI, which were deduced separ-
ately. Ideally, the GDI should increase following the se-
verity of hyperglycemia, hypoglycemia, and glycemic
variability. GDI can be applied to quantitate the glycemic
control of patients using CGM.
Four simulated glycemic profiles were tested to verify

the efficacy of GDI, as shown in Fig. 2. The numerical
results suggested that hypoglycemia, hyperglycemia, and
abnormal glycemic variability could independently in-
crease GDI values. In Table 2, MBG and SDBG, essential
and widely used mathematical parameters, were com-
puted to compare the transformed MGI’ and SDGI
values [42, 43]. HbA1c is a clinical glycemic reference
control, with eHbA1c as its counterpart in the simulated
data. Hyperglycemia with high variability and occurrence
of hypoglycemia showed a higher GDI value than the
same condition without hypoglycemia, even though the

Table 2 Glycemic control parameters of 24 h simulated CGM
data

Parameters Model A Model B Model C Model D

MBG 9.25 8.50 9.25 4.90

SDBG 3.78 4.59 0.85 0.61

eHbA1c 7.28 6.97 7.28 5.45

TBR 0% 25% 0% 0%

TIR 75% 50% 75% 100%

TAR 25% 25% 25% 0%

MGI’ 1.83 3.46 1.83 0.02

SDGI 2.77 3.75 0.75 0.65

GDI 2.10 3.56 1.73 0.09

MBG Mean blood glucose, SDBG Standard deviation of blood glucose, TBR
Time below range, TIR Time in range, TAR Time above range, eHbA1c
Estimated HbA1c, MGI Mean glucose index, SDGI Standard deviation of
glucose index, GDI Glycemic deviation index

Fig. 2 Four CGM traces were simulated for over 24 h. Hyperglycemia with high variability (a); hyperglycemia with high variability and the
occurrence of hypoglycemia (b); hyperglycemia with normal variability (c); normal blood glucose level (d)
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MBG and eHbA1c values were at lower levels (A vs. B),
indicating that hypoglycemia is an influential factor in
increasing glycemic deviation in our formula. When gly-
cemic variability or hyperglycemia was the only variable
that changed in comparison with others (A vs. C, C vs.
D), the GDI value remained consistent with that of the
abnormal variable, indicating its ability in evaluating fac-
tors that deviate. Notably, although glycemic variability
and GDI were higher (A vs. C), the TIR, TBR, and TAR
remained at the same level. It indicated that the GDI
could better reflect variability, while its clinical signifi-
cance and the impact on diabetic complications needed
to be researched further.
Additionally, we divided the thirty T2D patients

into four groups based on their GDI severity to apply
variance of analysis within clinical glycemic parame-
ters, average glycemic parameters, and glycemic vari-
ability parameters. As clinical glycemic parameters,
HbA1c, GA, and FBG represented glycemic control
levels in separate periods [44–46]. Statistically signifi-
cant differences were found among the four GDI
groups, even though clinical interventions performed
on patients during hospitalization were not consid-
ered. Statistical differences were also found among
the four GDI groups in terms of previously estab-
lished indices of the average glycemic level and vari-
abilities, such as MBG, AUCH-L, SDBG, MAGE
MODD. The ability to differentiate between these pa-
rameters indicated that GDI could adequately inte-
grate corresponding glycemic information. Moreover,
the increase in the average incidence of diabetic com-
plications indicated potential correlations between
GDI and diabetes complications.
Various methods have been used to evaluate overall

glycemic control. However, none of them have been de-
fined as the clinical gold standard or have been widely

used in clinical practice. The TIR of 3.9–10 mmol/L, in
addition to the HbA1c level, has recently been
regarded as an essential metric in analyzing CGM
data [9, 47]. Although TIR is not a comprehensive
index, its clinical value indicates the importance of
evaluating glycemic exposure time, which we have
considered when designing GDI. However, specific
comprehensive glycemic indicators [20, 21] have
neglected this factor in their designs. In this study,
the weighted coefficient “c” of MGI’ in the deduction
of the GDI equation reflected glycemic exposure time
(1–4). Moreover, the weighted coefficient also reflected
the occurence of hypoglycemia, which proved to be
effective in Fig. 2 and Table 2.
Additionally, comprehensive glycemic indicators, such

as BGRI, IGC, and GRADE, tend not to add glycemic
variability as an independent factor. The quantification
of hyperglycemia and hypoglycemia indirectly reflected
the variability, but there are some situations in which it
cannot reflect. An example of this is the glycemic vari-
ability among patients with only hyperglycemia. In 1995,
Wojcicki proposed a glycemic parameter to improve the
M-value and named it as J-index [48]. The J-index was
the first to use the idea of integrating MBG and SDBG
to represent the mean level and the variability of gly-
cemia. However, we found that without data conversion
and appropriate weighting methods, hyperglycemia,
hypoglycemia, and glycemic variability could interact
with each other in the J-index. Thus, during the deduc-
tion of the GDI equation deducing, the standard quad-
ratic risk function was superimposed onto the
transformed blood glucose scale (1–2) [8], and value
ranges were adjusted for both factors (1–3, 2–2). The
adaptive weighting method was applied to ensure that
the abnormal factor held the dominant position between
MGI’ and SDGI (3–1).

Table 3 Deterioration of glycemic control positively correlated with increased GDI

Items Normal
(n = 4)

Mild
(n = 9)

Moderate
(n = 11)

Severe
(n = 6)

P-Value

HbA1c (%) 6.28 ± 0.76 8.58 ± 1.66 9.55 ± 1.85 10.40 ± 0.85 P<0.001#

GA (%) 15.14 ± 2.77 23.82 ± 6.11 27.75 ± 6.21 30.73 ± 5.87 P<0.01*

log-FBGa (mmol/L) 0.79 ± 0.10 (6.23 ± 1.30) 0.84 ± 0.06 (6.98 ± 0.88) 0.92 ± 0.08 (8.54 ± 1.71) 1.02 ± 0.11 (10.76 ± 2.64) P<0.001*

MBG (mmol/L) 7.00 ± 0.27 7.88 ± 0.63 10.96 ± 1.13 13.55 ± 1.56 P<0.001*

sqrt-AUCH-L
b (mmol/L∙ day) 0.48 ± 0.32 (0.31 ± 0.21) 0.93 ± 0.20 (0.90 ± 0.39) 1.79 ± 0.23 (3.27 ± 0.79) 2.40 ± 0.29 (5.83 ± 1.53) P<0.001*

SDBG (mmol/L) 1.06 ± 0.36 2.08 ± 0.50 2.77 ± 0.77 3.32 ± 1.01 P<0.001*

MAGE (mmol/L) 2.15 ± 0.55 3.98 ± 1.15 4.84 ± 1.49 5.27 ± 1.52 P<0.01*

MODD (mmol/L) 1.07 ± 0.47 2.07 ± 0.76 2.68 ± 0.55 3.41 ± 1.06 P<0.01#

Diabetes complications 18.75% 27.75% 33.98% 37.48%

The results are expressed as mean ± SD. *, One-way ANOVA; #, Brown–Forsythe test. A P value of < 0.05 was considered to be statistically significant. alog-
transformation; bsquare-root transformation. Original data are shown in parentheses
HbA1c Glycosylated hemoglobin, GA Glycated Albumin, FBG Fasting blood glucose, MBG Mean blood glucose, AUC Area under the curve, SDBG Standard deviation
of blood glucose, MAGE Mean amplitude of glycemic excursions, MODD Mean of daily differences
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This study has several limitations that should be noted.
First, it was conducted at a single-center, which limited
the number of patients who used iPro2 CGM. Second,
because GDI was designed to evaluate the overall gly-
cemic condition of individuals with CGM, it did not
show transient glycemic changes. Third, there is no
similar “gold standard” glycemic index, so diagnostic
tests and further comparisons are required to identify
GDI application limits. Finally, the relationship between
the GDI and diabetic complications should be further
addressed before it is applied in clinical practice.

Conclusions
The novel glycemic parameter, GDI, is a monitoring
index that integrates multiple blood glucose measures.
GDI mainly quantifies abnormalities in the average gly-
cemic level and glycemic variability based on CGM data.
Therefore, the GDI may be useful for the screening and
evaluation of glycemic disorders. Studies using more ex-
tensive databases are needed to investigate the applica-
tion of this novel index further.
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