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Circulating betatrophin/ANGPTL8 levels
correlate with body fat distribution in
individuals with normal glucose tolerance
but not those with glucose disorders
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Abstract

Background: The relationship between betatrophin/ANGPTL8 and obesity has been investigated using body mass
index (BMI); however, since BMI reflects overall adiposity rather than body fat distribution, it remains unclear
whether fat deposition in different areas of the body affects betatrophin expression. Here, we investigated the
correlation between circulating betatrophin levels and body fat distribution in patients with different glucose
tolerance.

Methods: We performed a cross-sectional study in 128 participants with impaired glucose tolerance (IGT; n = 64) or
normal glucose tolerance (NGT; n = 64). Circulating betatrophin levels were detected by enzyme-linked
immunosorbent assay (ELISA). Body fat distribution (subcutaneous, visceral, and limb fat) was measured by
magnetic resonance imaging (MRI) and a body fat meter.

Results: After controlling for age, sex, and BMI, betatrophin was correlated positively with visceral adipose tissue-to-
subcutaneous adipose tissue ratio (VAT/SAT ratio; r = 0.339, p = 0.009) and negatively with body fat ratio (BFR; r = −
0.275, p = 0.035), left lower limb fat ratio (LLR; r = − 0.330, p = 0.011), and right lower limb fat ratio (RLR; r = − 0.288,
p = 0.027) in the NGT group, with these correlations remaining after controlling for triglycerides. VAT/SAT ratio
(standardized β = 0.419, p = 0.001) was independently associated with serum betatrophin levels; however,
betatrophin was not associated with body fat distribution variables in the IGT group.

Conclusions: Circulating betatrophin levels correlated positively with VAT/SAT ratio and negatively with lower limb
fat, but not with subcutaneous or upper limb fat, in individuals with normal glucose tolerance. Thus, betatrophin
may be a potential biomarker for body fat distribution in individuals without glucose disorders.
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Background
Betatrophin, also known as ANGPTL8, lipasin,
C19orf80, TD26, or RIFL, is a member of the
angiopoietin-like protein family that is expressed in liver
and adipose tissue [1–3]. Multiple members of this pro-
tein family are closely related to obesity and obesity-
related metabolic diseases: ANGPTL3, ANGPTL4, and
ANGPTL6 can directly regulate lipid, glucose, and en-
ergy metabolism without exerting angiogenic effects [4].
Betatrophin, a nutritionally-regulated factor, also in-
volves in the pathophysiology of lipid metabolism [5–7],
presenting with that betatrophin is an important regula-
tor of plasma triglycerides (TGs) [5, 6, 8]. Serum TG
levels are reduced in betatrophin-null mice [6] and dra-
matically increased in betatrophin-overexpressing mice
[5, 7]. Betatrophin also plays an important role in lipid
storage in adipocytes. In 3T3-L1 adipocytes, the knock-
down of betatrophin during adipogenesis quantitatively
and significantly decreases neutral lipid levels, while re-
combinant betatrophin increases intracellular TG levels
[8]. Furthermore, a recent study showed that Angptl8
antisense oligonucleotides protect fat-fed mice against
hepatic steatosis and insulin resistance by promoting
adipose lipoprotein lipase (LPL) activity and inhibiting
ectopic lipid accumulation [9].
Recently, an increasing number of studies have fo-

cused on the relationship between betatrophin and obes-
ity; however, their results have been controversial [10–
13]. Jia et al. demonstrated that serum betatrophin levels
are significantly elevated in overweight patients but not
in those with obesity [13], whereas another study
showed that betatrophin levels are higher in obese indi-
viduals than in the non-obese population [11]. Lee [14]
and Ren [12] found that betatrophin levels are higher in
both overweight and obese subjects. Betatrophin levels
were also observed to be decreased in morbidly obese in-
dividuals (BMI > 40 kg/m2) but not change in obese indi-
viduals (BMI 30–40 kg/m2) [15]. Some studies have
explored the effect of weight change on betatrophin, pre-
senting with inconsistent results. A study reported that
serum betatrophin levels decrease after diet-related
weight loss [16] while another noted that only surgery-
induced weight loss increases blood betatrophin levels
[17].
Why were the inconsistent results observed in these

clinical studies? One possible explanation is that only
BMI was used to evaluate the degree of obesity of the
participants in these studies. As we know, although it is
widely used as a proxy to estimate overall adiposity and
total fat mass in clinical studies, BMI either cannot ac-
curately distinguish between fat and lean mass, or reflect
the distribution of body fat. We speculate that betatro-
phin could be synthesized only in adipose tissue of some
parts of the body, rather than all adipose tissue, which

may be the reason of inconsistent results regarding the
relationship between BMI and betatrophin. Our previous
study suggested that betatrophin levels are positively
correlated with hepatic lipid deposition independently of
obesity [18]. Von Loeffelholz et al. found that omental
fat betatrophin mRNA expression is significantly higher
in obese patients with liver steatosis and insulin resist-
ance than in BMI-matched insulin-sensitive subjects [3].
However, whether or not fat distribution plays a role in
the relationship between obesity and betatrophin is still
unclear. Herein, we performed a cross-sectional study to
explore the correlation between blood betatrophin levels
and body fat distribution in patients with different glu-
cose tolerance status.

Methods
Study population
A total of 128 subjects were recruited from the Depart-
ment of Endocrinology of the First Affiliated Hospital of
Sun Yat-sen University in a nationwide multi-center in-
vestigation known as the “Early Identification and Inter-
vention Techniques of Metabolic Syndrome Study”
between October 2012 and November 2013. The partici-
pants either had impaired glucose tolerance (IGT; n =
64) or were age- and sex-matched subjects with normal
glucose tolerance (NGT; n = 64). IGT diagnoses were
based on diagnostic criteria issued by the American Dia-
betes Association (ADA) in 2012 [19]. Subjects were ex-
cluded from the study based on the following criteria:
those treated with oral antidiabetic, hypolipidemic, and/
or antihypertensive agents, and those with active hepa-
titis, renal or liver dysfunction, congestive heart failure,
or other known major diseases. The study was approved
by the Ethics Committee Board of the First Affiliated
Hospital of Sun Yat-sen University. All participants re-
ceived oral and written information about the study and
provided written informed consent.

Anthropometric measurements and biochemical
evaluations
Blood samples were collected from an antecubital vein
in the morning after an overnight fast to analyze glucose,
insulin, and betatrophin levels and lipid profiles. Blood
samples were also collected 120 min after glucose inges-
tion as part of the 75 g oral glucose tolerance test
(OGTT) to measure plasma glucose and serum insulin
levels. HbA1c was measured using high-pressure liquid
chromatography. Serum betatrophin levels were deter-
mined using a commercially available human enzyme-
linked immunosorbent assay (ELISA) kit (cat no.
E11644h; Wuhan Eiaab Science, Wuhan, China). Sam-
ples were measured in duplicate according to the manu-
facturer’s protocol. β cell function was assessed by
homeostasis model assessment of β cell function
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(HOMA-β) [20]. Insulin resistance was estimated by
index of homeostasis model assessment of insulin resist-
ance (HOMA-IR) [20], quantitative insulin sensitivity
check index (QUICKI) [21] and the Matsuda insulin sen-
sitivity index (Matsuda ISI) [21]

Measurement of body fat distribution
Measurement of abdominal subcutaneous and visceral fat
Participants were examined using abdominal coil mag-
netic resonance imaging (MRI; 3-Tesla whole-body scan-
ner; SIEMENS 3.0 T MAGNETOM Verio; Siemens
Healthcare Sector, Germany), as described previously
[18, 22]. The same radiologist performed all abdominal
MRI scans. Abdominal subcutaneous adipose tissue
(SAT) and visceral adipose tissue (VAT) were evaluated
by calculating the abdominal subcutaneous fat area
(SFA) and visceral fat area (VFA) separately. The bound-
ary for the SFA region of interest (ROI) was defined be-
tween the abdominal skin contour and the outer margin
of the abdominal wall muscles, while the VFA ROI was
defined between the inner margin of the abdominal wall
muscles and the anterior border of the spinal column.

Measurement of body and limb fat
The body fat ratio (BFR), upper limb fat ratios, and
lower limb fat (including gluteal fat) ratios were mea-
sured using a body fat meter (Tanita MC-180, Tokyo,
Japan). Subjects wearing a single garment were
instructed to stand naturally on the body fat meter with
bare feet, making sure that their feet and hands made
close contact with the plate electrode. Values were read
from a computer connected to the body fat meter.

Statistical analysis
All statistical analyses were performed using SPSS ver-
sion 21.0 (SPSS, Chicago, Illinois). Data were presented
as the mean ± SD (for normally distributed variables) or
the median (25th and 75th percentiles; for non-normally
distributed variables). Data that were not normally dis-
tributed were logarithmically transformed for statistical
analysis. Differences among groups were analyzed using
analysis of variance (ANOVA) followed by Fisher’s least
significant difference (LSD) test. The Kolmogorov-
Smirnov test was used to analyze non-normally distrib-
uted data. Differences in gender distribution were ana-
lyzed using χ2 analysis. Correlation coefficients were
analyzed using Spearman’s (non-normally distributed
data) or Pearson’s (normally distributed data) rank cor-
relation. To elucidate the independent relationship be-
tween betatrophin and clinical parameters, we selected
betatrophin as a dependent variable and other clinical
parameters as the independent variables to build a mul-
tiple linear stepwise regression equation. Only variables
that were significantly (P < 0.05) related to betatrophin

by Spearman or Pearson correlation analyses were en-
tered into the multiple linear stepwise regression ana-
lysis. P values of < 0.05 were considered statistically
significant.

Results
Circulating betatrophin levels do not differ in patients
with IGT and NGT
The baseline clinical characteristics of the study partici-
pants are listed in Table 1. The betatrophin concentra-
tions and body fat distribution indices did not differ
between the NGT and IGT groups. The IGT group had
higher 2 h-PG and alanine aminotransferase (ALT) levels
(p < 0.05) and significantly lower BMI and Matsuda ISI
than the NGT group (p < 0.05); however, no differences
were observed between the other anthropometric and
biochemical variables in the two groups.

Betatrophin levels correlate with body fat distribution
indicators in patients with NGT
Correlation analysis revealed that betatrophin levels cor-
related positively with the WHR (r = 0.319, p = 0.010),
VAT (r = 0.364, p = 0.003), and VAT/SAT ratio (r =
0.425, p < 0.001) and negatively with the BFR (r = −
0.304, p = 0.015), LLR (r = − 0.326, p = 0.010), and RLR
(r = − 0.304, p = 0.016) in the NGT group (Table 2 and
Fig. 1). After controlling for age, sex, and BMI, betatro-
phin levels correlated positively with the VAT/SAT ratio
(r = 0.339, p = 0.009) and negatively with the BFR (r = −
0.275, p = 0.035), LLR (r = − 0.330, p = 0.011), and RLR
(r = − 0.288, p = 0.027; Table 2). When also controlling
for TG, the correlations between betatrophin levels and
these variables (VAT/SAT ratio, BFR, LLR, and RLR)
remained but were slightly attenuated (Table 2); how-
ever, no associations were detected between betatrophin
levels and any body fat distribution variables in the IGT
group (Table 3).

Betatrophin correlates independently with the VAT/SAT
ratio
To determine whether serum betatrophin levels were in-
dependently associated with body fat distribution indi-
ces, we performed multiple stepwise linear regression
analysis. This revealed that the VAT/SAT ratio (stan-
dardized β = 0.419, p = 0.001) was independently associ-
ated with serum betatrophin levels in subjects with NGT
(Table 4).

Discussion
Most of previous studies have focused on the association
between betatrophin and obesity or BMI. In the past 2
years, researchers have begun to turn their attention to
the relationship between betatrophin and body fat distri-
bution. Kriebel et al. sampled visceral and subcutaneous
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fat from patients with or without hepatic steatosis to de-
tect betatrophin mRNA expression, with the results that
betatrophin mRNA levels were higher in the VAT than
the SAT in both groups [3]. Another study found that
circulating betatrophin levels have an inverse relation-
ship with SAT expression in lean and obese patients
with and without T2DM, suggesting that the local effect
of betatrophin on adipose tissue is independent of obes-
ity [23]. These two studies also confirmed that

betatrophin is not specifically secreted by liver tissues, as
previously reported by Zhang [5], but is also secreted by
visceral and subcutaneous fat. In this study, we used a
noninvasive approach to explore the relationship be-
tween betatrophin and body fat distribution in patients
with different glucose tolerance status. We interestingly
found that betatrophin levels correlated positively with
VAT/SAT ratio which is consistent with the results of
Kriebel [3], and negatively with lower body adiposity

Table 1 Clinical and biochemical characteristics of the study subjects from different groups

Variables NGT (n = 64) IGT (n = 64) P value

Agea 52.98 ± 6.39 53.58 ± 6.82 0.357

Sex, male/female (%) 32/32 32/32 1.000

BMI (kg/m2)a 25.15 ± 2.25 24.18 ± 2.62* 0.033

WHR 0.88 ± 0.06 0.88 ± 0.06 0.697

SBP (mmHg) 122.88 ± 14.04 125.05 ± 15.06 0.607

DBP (mmHg) 75.59 ± 11.89 73.09 ± 10.68 0.986

ALT (U/L)a 17.00 (14.00–23.00) 25.00 (16.25–29.75)* 0.003

AST (U/L)a 22.00 (18.00–24.00) 23.00 (20.00–26.75) 0.058

GGT (U/L)a 25.00 (18.00–36.75) 29.00 (21.00–43.00) 0.212

HbA1c (%) 5.63 ± 0.49 5.69 ± 0.43 0.280

TC (mmol/L) 5.27 ± 0.86 5.25 ± 0.95 0.611

TG (mmol/L)a 1.45 ± 0.87 1.80 ± 1.84 0.062

LDL cholesterol (mmol/L) 3.46 ± 0.86 3.37 ± 0.88 0.962

HDL cholesterol (mmol/L)a 1.28 ± 0.38 1.23 ± 0.37 0.618

SAT (cm2)a 170.75 (139.35–216.08) 152.55 (126.98–200.88) 0.120

VAT (cm2)a 86.97 (57.43–111.90) 94.22 (69.67–120.93) 0.363

VAT/SATa 0.47 (0.33–0.76) 0.52 (0.44–0.74) 0.084

BFR (%)a 25.30 (19.50–32.20) 26.30 (21.10–31.10) 0.940

LUR (%) 25.00 ± 8.07 24.61 ± 7.76 0.305

RUR (%) 24.48 ± 7.94 23.88 ± 7.71 0.396

LLR (%) 26.95 ± 9.56 26.25 ± 10.19 0.280

RLR (%) 26.92 ± 9.51 26.02 ± 10.47 0.169

FPG (mmol/L)a 5.20 (4.83–5.60) 5.10 (4.80–5.50) 0.460

2 h-PG (mmol/L)a 6.10 (5.00–6.90) 8.90 (8.40–9.60)* 0.000

FINS (μU/mL)a 7.96 (5.22–9.83) 8.64 (5.97–11.33) 0.157

HOMA-IRa 1.74 (1.19–2.41) 2.03 (1.38–2.61) 0.263

HOMA-βa 87.00 (64.55–119.05) 107.39 (70.54–146.16) 0.087

QUICKIa 0.35 (0.33–0.37) 0.34 (0.33–0.36) 0.230

Matsuda ISI 6.12 ± 3.36 4.72 ± 2.91* 0.013

Betatrophin (pg/mL)a 708.52 (562.72–895.82) 729.72 (543.09–1022.67) 0.443

BMI Body mass index, WHR Waist-to-hip ratio, SBP Systolic blood pressure, DBP Diastolic blood pressure, ALT Alanine aminotransferase, AST Aspartate
aminotransferase, GGT Gamma-glutamyl transpeptidase, TC Total cholesterol, TG Triglyceride, LDL Low-density lipoprotein cholesterol, HDL High-density
lipoprotein cholesterol, SAT Subcutaneous adipose tissue, VAT Visceral adipose tissue, VAT/SAT Ratio visceral adipose tissue-to-subcutaneous adipose tissue ratio,
BFR Body fat ratio, LUR Left upper limb fat ratio, RUR Right upper limb fat ratio, LLR Left lower limb fat ratio, RLR Right lower limb fat ratio, FPG Fasting plasma
glucose, 2 h-PG 2 h-plasma glucose during oral glucose tolerance test, FINS Fasting blood insulin, HOMA-β Homeostasis model of β cell function, HOMA-IR
Homeostasis Model of insulin resistance, QUICKI Quantitative insulin sensitivity check index, Matsuda ISI Matsuda insulin sensitivity index. Data are presented as
the mean ± SD (normally distributed) or median (25th and 75th percentiles; non-normally distributed). Differences between groups were analyzed by ANOVA
followed by the LSD test. Gender distribution differences were analyzed by χ2 analysis. * p < 0.05 vs. the NGT group. aNon-normally distributed data were
transformed logarithmically for statistical analysis
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Table 2 Correlation analysis of body fat distribution and betatrophin levels in the NGT group

Betatrophin Betatrophin (age, sex, and BMI adjusted) Betatrophin (age, sex, BMI, and TG adjusted)

r P value Partial r P value Partial r P value

WHR 0.319 0.010* 0.175 0.185 0.191 0.151

SAT − 0.192 0.128 − 0.189 0.151 − 0.199 0.135

VAT 0.364 0.003* 0.239 0.069 0.244 0.064

VAT/SAT 0.425 0.000* 0.339 0.009* 0.355 0.006*

BFR (%) −0.304 0.015* −0.275 0.035* −0.269 0.041*

LUR (%) −0.236 0.065 0.044 0.740 0.040 0.767

RUR (%) −0.171 0.184 0.163 0.217 0.156 0.244

LLR (%) −0.326 0.010* −0.330 0.011* −0.324 0.013*

RLR (%) −0.304 0.016* −0.288 0.027* −0.281 0.033*

WHR Waist-to-hip ratio, SAT Subcutaneous adipose tissue, VAT Visceral adipose tissue, VAT/SAT Ratio visceral adipose tissue-to-subcutaneous adipose tissue ratio,
BFR Body fat ratio, LUR Left upper limb fat ratio, RUR Right upper limb fat ratio, LLR Left lower limb fat ratio, RLR Right lower limb fat ratio. Statistical significance
from Pearson’s (normally distributed data) or Spearman’s (non-normally distributed data) correlation tests. *P values < 0.05 were considered statistically significant

Fig. 1 Plasma betatrophin concentrations correlated positively with WHR (r = 0.319, p = 0.010), BFR (r = -0.304, p = 0.015), VAT (r = 0.364, p =
0.003), VAT/SAT (r = 0.425, p < 0.001), LL ratio (r = − 0.326, p = 0.010), and RL ratio (r = − 0.304, p = 0.016) in the NGT group
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including lower limb and gluteal fat in NGT subjects,
but not IGT subjects, indicating that betatrophin levels
could be closely associated with body fat distribution in
NGT subjects.
Which mechanism plays a role in the emergence of

this result? As is well known, the contribution of various
adipose tissue deposits varies for the risk of metabolic
disease [24–26]. Visceral adiposity is regarded as be
more closed with metabolic diseases such as hyperten-
sion, diabetes, and dyslipidemia compared to other tissue
fat deposits [26]. Thus, the VAT/SAT ratio which is a
metric of relative body fat composition has been pro-
posed to be an independent predictor of death and cor-
onary events [25, 27]. In addition, visceral obesity has
also been defined as a predictor of nonalcoholic fatty
liver disease (NAFLD) [28]. Unlike visceral adiposity,
lower body subcutaneous adiposity which accumulates
in the thighs and hips is thought to be metabolically pro-
tective [25]. Many studies reported that the accumula-
tion and infiltration of macrophages in adipose tissue to
active inflammation could be the underlying mechanism.
Obesity-associated adipose tissue inflammation varies
between individuals, possibly due to depot-specific dif-
ferences [8]. In mice and humans, VAT contains a

higher percent of proinflammatory M1 macrophages and
CD4 Th1 T-cells than in SAT [29]. Pinnick et al. pro-
vided an evidence to support an increased macrophage
presence in abdominal SAT, whereas no corresponding
enrichment was observed in gluteal SAT. Ejarque et al.
reported that macrophages can express and secrete
ANGPTL8 in their preliminary experiments [30]. There-
fore, we speculate that the higher the VAT or VAT/
SAT, the more macrophages would accumulate and in-
filtrate in the adipose tissue, and the more betatrophin
would be secreted. The opposite trend could be ob-
served when lower limb fat increased. The speculation
needs to be verified in further study.
Betatrophin has recently emerged as an indicator of

metabolic disorders, with two separate case-control
studies finding that betatrophin levels are elevated in
subjects with metabolic syndrome and hypertension [31,
32]. A Chinese study of non-diabetic individuals found
that circulating full-length betatrophin levels are an in-
dependent risk factor for coronary artery disease (CAD)
and are positively associated with its severity [33]. The
homogeneity in the correlation between VAT/SAT ratio,
betatrophin, and metabolic disorders may be due to their
close association, as observed in this study.
It is therefore reasonable to speculate that the associ-

ation between abnormal body fat distribution and car-
diovascular and metabolic diseases may be partially
mediated by betatrophin. Indeed, a growing body of evi-
dence has suggested that body fat distribution is closely
related to the inflammatory state of the body [25–27,
34]. Moreover, VAT accumulation and a higher VAT/
SAT ratio may also be associated with increased chronic
low-grade systemic inflammation, which could further
increase betatrophin synthesis [25, 26, 31]. Correspond-
ingly, elevated betatrophin levels may contribute toward
the pathogenesis of dyslipidemia, which is one of the
most important risk factors for CAD, while in vitro and

Table 3 Correlation analysis of body fat distribution and betatrophin levels in the IGT group

Betatrophin Betatrophin (age, sex, and BMI adjusted) Betatrophin (age, sex, BMI and TG adjusted)

r P value Partial r P value Partial r P value

WHR 0.003 0.984 −0.022 0.866 −0.015 0.911

SAT −0.012 0.923 −0.054 0.680 −0.034 0.796

VAT −0.055 0.666 −0.054 0.682 −0.046 0.731

VAT/SAT −0.024 0.850 0.000 0.998 −0.009 0.944

BFR (%) 0.002 0.987 −0.070 0.593 −0.064 0.629

LUR (%) −0.001 0.991 0.096 0.464 0.114 0.390

RUR (%) 0.026 0.842 0.183 0.162 0.192 0.145

LLR (%) 0.058 0.652 0.018 0.889 0.022 0.866

RLR (%) 0.036 0.780 −0.004 0.977 0.001 0.993

WHR Waist-to-hip ratio, SAT Subcutaneous adipose tissue, VAT Visceral adipose tissue, VAT/SAT Ratio visceral adipose tissue-to-subcutaneous adipose tissue ratio,
BFR Body fat ratio, LUR Left upper limb fat ratio, RUR Right upper limb fat ratio, LLR Left lower limb fat ratio, RLR Right lower limb fat ratio. Statistical significance
from Pearson’s (normally distributed data) or Spearman’s (non-normally distributed data) correlation tests. *P values < 0.05 were considered statistically significant

Table 4 Multiple stepwise regression analysis of betatrophin
levels and the variables of body fat distribution in the NGT
group

Independent variable Standardized β t statistic P value

VAT/SAT 0.419 3.572 0.001*

BFR (%) −0.153 −1.160 0.251

LLR (%) −0.131 −0.926 0.358

RLR (%) −0.106 −0.744 0.460

VAT/SAT Ratio visceral adipose tissue-to-subcutaneous adipose tissue ratio, BFR
Body fat ratio, LLR Left lower limb fat ratio, RLR Right lower limb fat ratio. *P
values < 0.05 were considered statistically significant
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in vivo studies have suggested that betatrophin could ag-
gravate hypertriglyceridemia by promoting the ability of
ANGPTL3 to bind and inhibit LPL [5, 6, 35]. Clinical
studies have also confirmed that betatrophin levels are
significantly and positively related to TG and LDL-C
levels and inversely related to HDL-C levels in children
and patients with diabetes [1, 7, 36, 37] [38]. In addition,
betatrophin is positively correlated with age [36], liver
fat content [18], and blood pressure [32], all of which
are independent risk factors for atherosclerosis and may
contribute to the occurrence and development of CAD.
In addition, our findings may explain why previous

clinical studies have yielded inconsistent and even op-
posite betatrophin levels in obese or overweight people
[10, 11, 13, 39, 40]. This is likely due to the different
baseline characteristics of the populations recruited in
these clinical trials, including age, sex, lifestyle, genetics,
and gene-environment interactions that can influence
body fat distribution [41]. In this study, we also found
that correlations between betatrophin and body fat dis-
tribution indices only existed in the NGT group, not the
IGT group. We speculate that the different glucose
metabolic states of the patients could affect their inflam-
matory state, since increased inflammatory cytokine
levels affect betatrophin synthesis [14, 42–44], accord-
ingly the relationship between betatrophin and body fat
distribution cannot be observed. It should be noted that
the hypothesis requires further elucidation. In addition,
other factors such as the presence of cardiovascular dis-
ease, hypertension, and dyslipidemia, which are common
in IGT group, could affect the expression of this protein,
as demonstrated in previous studies [32, 33]. Previous
animal experiments have confirmed that betatrophin
was a pivotal regulator of plasma triglycerides. Serum
triglycerides levels are reduced in ANGPTL8-null mice
[13] and increased dramatically in ANGPTL8 overex-
pressing mice [5, 7]. However, as are inconsistent with
the results of animal experiments, many clinical studies
[10, 12, 13, 36, 37] including the present study did not
find any relationship between betatrophin and triglycer-
ides. So, the adjustment of TG levels cannot affect the
results of the nonsignificant relationship between beta-
trophin and fat body distribution. After adjusting for
age, sex, BMI, the results were still the same. The pos-
sible reason is that there is no statistical difference in
these variables between NGT group and IGT group.
Our study has several limitations. Firstly, food inges-

tion greatly affects betatrophin levels; however, our ana-
lyses were based on single blood betatrophin
measurements obtained under fasting conditions, which
may not reflect betatrophin levels over time. Secondly,
the cross-sectional design of this study allowed us to ob-
serve the correlation between VAT/SAT ratio and beta-
trophin levels but cannot prove causality between the

two variables. Thirdly, since no patients with impaired
fasting glycemia were enrolled in this study due to its
relatively low prevalence, our findings do not fully reflect
the metabolic characteristics of prediabetes; however,
this does not affect the conclusions drawn from the
NGT population. Lastly, the ethic differences in the ex-
pression or plasma concentrations of betatrophin should
be considered. However, as we know, no related study
has ever been published. The present study was carried
out just in Chinese population, the results of which can-
not directly extend to other ethic population.
In summary, the findings of this study could provide

new insights into the possible contribution of betatro-
phin to the pathogenesis of obesity. We demonstrated
that betatrophin levels are correlated with body fat dis-
tribution in individuals with NGT, showing a significant
positive correlation with VAT/SAT ratio and negative
correlation with lower body fat. The gold standard
methods for assessing body fat distribution include CT
and MRI, which allow the amount of adipose tissue de-
posited in particular depots to be accurately evaluated
[24]; however, their time-consuming nature and high
cost limit their clinical applications [41]. The findings of
this study suggest that betatrophin could be a favorable
indicator that reflects body fat distribution during the
normal stage of glucose intolerance and could be a sim-
ple and reliable risk assessment surrogate for CAD and
metabolic disease in clinical practice. However, the
mechanisms via which this protein affects ectopic body
fat distribution remain unclear and further studies are
warranted.

Conclusion
Circulating betatrophin levels correlated positively with
VAT/SAT ratio and negatively with lower limb fat in in-
dividuals with NGT. Thus, betatrophin may be a bio-
marker for body fat distribution in individuals without
glucose disorders.
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