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No changes in levels of bone formation
and resorption markers following a broad-
spectrum antibiotic course
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Abstract

Background: Intestinal bacteria influence bone remodeling in rodents, and antibiotic manipulation of the rodent
gut microbiota increases bone formation and prevents ovariectomy-induced bone loss. In theory, these effects may
be mediated by changes in sex hormone biotransformation in the gut, gut serotonin secretion or nutrition-induced
secretion of glucagon-like peptide 2 (GLP-2) and glucose-dependent insulinotropic hormone (GIP). Antibiotics
change the human gut microbiota, but the effect of antibiotic treatment on human bone turnover is unknown.

Methods: We analyzed serum levels of bone turnover markers, serotonin, GLP-2 and sex hormones before, immediately
after, and eight, 42 and 180 days after a 4-day per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg
and meropenem 500 mg once-daily) in twelve healthy adult males. Fasting and meal-stimulated procollagen type I
amino-terminal propeptide (P1NP), C-telopeptide of type I collagen (CTX) and osteocalcin levels were measured.

Results: While the antibiotic course reduced the stool abundance and composition of anaerobic bacteria as confirmed
by cultivation studies, neither short nor long-term alterations in serum P1NP, CTX and osteocalcin were observed.
Furthermore, we did not observe any changes in levels of serum GLP-2, serotonin or sex hormones.

Conclusion: Eradication of anaerobic bacteria from healthy adult males had no effect on serum bone turnover markers.

Background
Bone remodeling involves a coordinated interplay of osteo-
blastic and osteoclastic activity. Recent evidence from ani-
mal studies suggests that intestinal microorganisms (i.e. the
gut microbiota) and in particular gut bacteria, may influ-
ence bone remodeling, but results of animal studies are
conflicting. Thus, 7–9 weeks old mice (C57BL/6) raised
under germ-free conditions had reduced number of osteo-
clasts and increased bone mineral density (BMD) compared
to conventionally raised animals, and re-colonization with
gut bacteria normalized these features [1], indicating that
microbiota inhibit osteoclastogenesis and bone metabolism.
By contrast, presence of microbiota was associated with in-
creased BMD and femoral length in 8 weeks old mice of a
different strain (BALB/c) [2]. Furthermore, colonization of
2 months old germ-free mice (CB6F1) with gut microbiota

caused a transient decrease in bone formation, which was
followed by an increase in bone formation with greater lon-
gitudinal and radial bone growth at ten months of age [3].
Microbiota decreased trabecular bone volume fraction
and increased levels of osteoclastic cytokines in 20 weeks
old mice (C57BL/6) with leuprolide-induced estrogen
deficiency but not in controls [4], and minocycline, a
broad-spectrum tetracycline antibiotic, increased BMD and
bone formation rate in ovariectomized 22–24 months old
rats (Wistar) [5], indicating that the effect of microbiota on
bone metabolism may depend on sex hormone levels.
Gut bacteria have the potential to influence bone me-

tabolism through at least five different pathways: 1) By
modulating secretion of gut-derived serotonin and/or
gut hormones, which are involved in postprandial bone
turnover [6, 7], 2) by chancing host immune cell activity
with subsequent impact on bone cell differentiation and
activity [1, 8], 3) by metabolizing and transforming intes-
tinally excreted steroid compounds, including sex hor-
mones [9], 4) by stimulating activity in the somatotropic
axis [2, 3], and 5) by influencing intestinal absorption of
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vitamins, calcium or other micronutrients involved in
bone homeostasis [10].
Antibiotic treatment results in profound short-term

changes of the gut microbiota and several kinds of anti-
biotics have been shown to alter the rodent bone
homeostasis: Low-dose penicillin, vancomycin and chlor-
tetracycline all increased BMD in 3 week old but not
7 week old mice (C57BL/6) [11], and low-dose penicillin
increased bone mineral content (BMC) and BMD in fe-
male but reduced BMC in male 20 week old mice
(C57BL/6) [12], suggesting that the effect of microbiota var-
ies with the skeletal development and between sexes. More-
over, broad-spectrum antibiotics, by changing the gut
microbiota, decreased insulin-like growth factor 1 (IGF-1),
increased bone mass and reduced bone resorption in
two-month-old BALB/c mice [3] and broad-spectrum anti-
biotic treatment increased the expression of incretin hor-
mones including glucagon-like peptide 2 (GLP-2) [13],
which in turn may influence bone resorption [14], and de-
crease the inflammatory state in rodents [15].
The potential effects of antibiotic-induced changes in

gut bacteria composition on bone metabolism have never
been studied in humans. We hypothesized that changes in
gut bacteria composition would link to bone metabolism,
and in order to investigate underlying mechanisms we
analyzed serum/plasma levels of serotonin, sex hormones,
GLP-2 and bone turnover markers before and after a
four-day, broad-spectrum antibiotic course in healthy
adult males.

Methods
Study participants and experimental procedures
This investigation was designed to assess effects of changes
in gut microbiota on glucose homeostasis and bone metab-
olism assessed using the biochemical markers of bone turn-
over: serum procollagen type I amino-terminal propeptide,
C-telopeptide of type 1 collagen and osteocalcin. Data
regarding glucose metabolism, high-sensitivity C-reactive
protein (hs-CRP), gut and pancreatic hormone secre-
tion have been published previously, including data on
glucose-dependent insulinotropic polypeptide (GIP) and
information about the protocol and experimental proce-
dures [16]. In short, blood samples were taken from 12
healthy, male volunteers subjected to a four-day broad
spectrum antibiotics course consisting of once-daily admin-
istration of 500 mg meropenem, 500 mg vancomycin and
40 mg gentamicin dissolved in apple juice and ingested or-
ally. The combination of these three non-absorbable antibi-
otics was chosen to eradicate as many gut bacteria as
possible, with the lowest possible risk of side-effects. The
participants (age (mean value with 95% confidence interval
(CI) in brackets): 23.4 (20.0–26.4) years; body mass index
(BMI): 22.6 (21.3–23.8) kg/m2 were examined after an over-
night fast on five study visits: before (day 0), immediately

after (day 4) and following 8, 42 and 180 days after initi-
ation of the antibiotic course. On three of these visits (day
0, day 4 and day 42), 4-h standardized liquid meal tests
were performed. Blood samples were drawn 30 and 0 min
before and 15, 30, 45, 45, 60, 90, 120, 240 min after inges-
tion of a liquid mixed meal (2205 kJ, 64.4 g carbohydrate,
20.3 g fat and 21.0 g protein, Nutridrink, Nutricia, Allerød,
Denmark). Plasma/serum levels of GLP-2 and bone turn-
over markers were determined during fasting and postpran-
dial conditions at these visits. On all visits, plasma/serum
levels of serotonin, sex hormones and bone turnover
markers were determined during fasting conditions. Stool
samples were collected prior to each of the five visits for
cultivation-based assessment of stool bacteria abundances.

Laboratory methods
All blood samples were drawn into ice-cooled 10 ml
vials without anticoagulants, except for blood samples
taken during meal tests on day 0, 4 and 42 for the ana-
lysis of GLP-2 and bone turnover marker levels (which
were collected in EDTA-vials and serum vials with clot
inhibitor, respectively). Following minimum 15 min of
coagulation, blood was centrifuged and serum aliquots
were stored at − 80 °C until analysis. Serum procollagen
type I amino-terminal propeptide, C-telopeptide of type
1 collagen and osteocalcin were measured with a chemi-
luminescence method using an automated immunoassay
system (iSYS, Immunodiagnostic Systems Ltd., Boldon,
England). Serum serotonin was measured using an
ELISA kit for research laboratories (Fitzgerald, Acton,
USA). Serum levels of testosterone, estradiol (total) and
estrone sulfate were measured by high-pressure liquid
chromatography with tandem mass spectrometry detec-
tion (AB Sciex API 6500, Framingham, USA). Serum
levels of sex hormone-binding globulin were determined
by a sandwich chemiluminescence assay (Roche Cobas
6000 analyzer, Rotkreuz, Switzerland). Plasma concen-
trations of GLP-2 were measured using a specific radio-
immunoassay for the intact, active hormone (code no.
92160), as previously described [17].

Calculations and statistical analysis
Statistical analyses were carried out using Prism 6 for
Windows (Graph Pad, California, USA). The repeated mea-
sures analysis of variance model was used to compare dif-
ferences between day 0 (baseline) value and day 4, 8, 42
and 180 values, correcting for multiple comparisons by use
of the Dunnett’s test. Gaussian distribution and sphericity
were assumed in all calculations. Postprandial excursions of
bone turnover markers and GLP-2 were summarized into
area under the curve (AUC) values, calculated using the
trapezoidal rule. Results are reported as means and 95%
confidence intervals (95% CI) unless otherwise stated.
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Results
A twenty-fold reduction in stool anaerobic (total) gut
bacteria abundance and a reduction in coliform, entero-
cocci and bifido bacteria abundances to below the detec-
tion limit were noted from day 0 to day 4 as previously
reported [16]. Stool abundance of aerobic bacteria in-
creased slightly immediately after the antibiotics course,
but no long-term changes in the stool abundances of the
five groups of gut bacteria were observed.
On all study days, fasting serum levels of bone turn-

over markers were within the expected range (Table 1).
Serum levels of bone turnover markers were reduced by
consumption of food (Fig. 1), but the antibiotic treat-
ment had no effect on fasting and postprandial levels of
bone turnover markers (Table 1, Fig. 1).
None of the participants had serum levels of total testos-

terone below the normal range for healthy men in the same
age group [18]. Overall, serum levels of sex hormones and
serotonin were unaffected by the antibiotic course, but a
small and temporary increase in sex hormone-binding
globulin was seen from day 0 (34 nmol/l (95% CI 22–46))
until day 8 (40 nmol/l (95% CI 28–52)) (Table 1). Plasma
GLP-2 increased after meal intake but there was no
difference in the AUC on day 0, 4 and 42 (Fig. 1b).
Similar, as reported earlier [1], the GIP responses to meal
intake were not affected by the antibiotic treatment
(Fig. 1b) and hs-CRP levels were below 3 mg/l at all time
points (Table 1) [16].

Discussion
To our knowledge, this is the first report on potential ef-
fects of broad-spectrum antibiotics on markers of turn-
over in humans. In order to reduce the risk of overlooking
relevant protracted changes in the investigated variables,
assessments of our participants were made 42 and
180 days after the antibiotics course. Despite a substantial
short-term reduction in anaerobic gut bacteria abundance
in the present human study, neither short nor long-term

changes were seen in fasting or postprandial levels of bone
turnover markers. Additionally, we investigated whether
alterations in gut microbiota influenced serum levels of
sex hormones and serotonin, and plasma levels of GLP-2
and GIP. While subtle and clinically irrelevant changes in
sex hormone-binding globulin were observed, changes in
levels of serotonin, GLP-2 and GIP were not observed,
suggesting that short-term exposure to broad-spectrum
antibiotics has no effect on sex hormones, serotonin,
GLP-2 and GIP secretion.
Preclinical data on the effect of the gut microbiota on

bone metabolism are conflicting, with reports suggesting
either deleterious or beneficial effects of the gut micro-
biota on bone metabolism [1–3], and antibiotics-induced
alterations in the composition of the microbiota caused
a temporary increase in BMD [11] or diverse effects in
male and female eugonadal mice [2, 12].
The study population comprised young, healthy men

with no history of metabolic bone disease at time of peak
bone mass. The fasting levels of bone turnover markers as
well as changes in bone turnover markers during food
intake were similar to those previously published [14],
supporting that bone metabolism in the study population
was normal. However, we did not observe any effect of a
combination of short-term broad-spectrum antibiotics on
bone metabolism assessed using biochemical markers.
Based on the available evidence from rodent models it
might be hypothesized that antibiotic exposure in early life
or in adulthood could influence bone metabolism in
humans. In a population-based cohort study of Finnish
children there was a positive association between exposure
to antibiotics in infancy and BMI and height at 24 months
of age [19], but antibiotics exposure later in life was not
associated with an increased risk of fractures in men in a
Danish register-based study that comprised more than
15,000 fracture cases and 47,000 controls [20].
There is some evidence from rodent models, that ma-

nipulation of the gut microbiota may affect plasma levels

Table 1 Serum levels of procollagen type I amino-terminal propeptide (PINP), osteocalcin and C-telopeptide of type I collagen
(CTX), testosterone, estradiol, estrone sulfate, sex hormone-binding globulin (SHBG) and serotonin measured in the fasting state on
each of the study days

Day 0 Day 4 Day 8 Day 42 Day 180

P1NP (ug/l) 108 (81–136) 116 (81–150) 114 (76–152) 104 (75–134) 113 (84–142)

Osteocalcin (ug/l) 35 (28–42) 37 (30–45) 36 (28–43) 33 (26–40) 35 (25–45)

CTX-1 (ug/l) 0.98 (0.68–1.29) 0.98 (0.72–1.24) 0.91 (0.64–1.17) 0.94 (0.67–1.21) 0.87 (0.58–1.15)

Testosterone (nmol/l) 19 (16–22) 21 (17–25) 23 (19–27) 21 (18–24) 26 (16–35)

Estradiol (pmol/l) 93 (75–112) 91 (68–114) 83 (63–103) 90 (70–110) 88 (59–117)

Estrone sulfate (umol/l) 19.7 (11.8–27.6) 15.7 (97.3–21.7) 22.1 (10.0–34.2) 20.3 (81.6–32.5) 22.8 (12.7–32.9)

SHBG (nmol/l) 34 (22–46) 36 (24–48) 40† (28–52) 34 (23–45) 36 (26–46)

Serotonin (ng/ml) 164 (92–236) 178 (95–261) 199 (116–282) 180 (101–258) 221 (139–303)

Data are expressed as mean with 95% confidence intervals in brackets. † denotes p < 0.05 (following correction for multiple comparisons), indicating a significant
change compared to day 0
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of sex steroids [9] and that bacterial enzymes may facili-
tate intestinal transformation of estrone to estradiol and
deconjugation of sex steroids [21]. Antibiotic treatment
has previously been shown to increase fecal excretion of
conjugated estrogens in both men and women, although
with no or only limited impact on plasma sex hormone
levels [22]. In line with the latter observation, we did not
see any significant changes in serum levels of total testos-
terone, estradiol or estrone sulphate following the anti-
biotic course in this study. The link between low-grade
inflammation and bone loss is well-established [23], and
antibiotic eradication of inflammatory gut bacteria could
theoretically lead to increases in bone formation and lower
bone resorption by lowering endotoxemia [24]. However,
the preset study was not designed to investigate effects of
antibiotic treatment on inflammation as hs-CRP levels
were below 3 mg/l at all study points.
This study has a number of important limitations that

should be acknowledged. First, the limited number of
participants and the substantial biological variability in
bone turnover markers caused by diurnal rhythms,
changes in diet etc. [14] means that we may have over-
looked changes in levels of bone turnover markers caused
by the antibiotic treatment. Second, the limited number of

participants and the large number of statistical tests
resulting from comparison of baseline and subsequent
measurements result in a high risk of chance findings. In
order to reduce the risk of type 1 errors, Dunnett’s test
for multiple comparisons was used to evaluate the pos-
sible changes with time. Third, surrogate markers of
bone turnover were used in the present investigation,
and we cannot exclude the possibility that direct assess-
ment of bone remodeling by dynamic bone histomor-
phometry could have shown effects of changes in gut
microbiota on bone metabolism. Fourth, the absence of
changes in bone turnover markers in our study could
relate to the short-term antibiotics exposure or the
study of a metabolically healthy adult male population
free of bone disease. Our findings do not exclude that
relevant changes in bone turnover markers may occur
following treatment with other types of antibiotics, longer
exposure time or in other study populations. Prominent
changes in rodent bone turnover have been seen following
gut microbiota manipulation in early life [11, 12] or during
sex steroid deficiency [4, 5]. It would therefore be of
interest to investigate the effects of antibiotic treat-
ment on early life bone development or bone turn-
over in post-menopausal women.

A B

Fig. 1 a. Serum levels of C-telopeptide of type I collagen (CTX), procollagen type I amino-terminal propeptide (PINP), osteocalcin and plasma
levels of glucagon-like peptide 2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) during fasting and postprandial conditions
before (day 0), immediately after (day 4) and six weeks after (day 42) the broad-spectrum antibiotic cocktail. GIP results have been previously
published [16]. b. Postprandial excursions of bone turnover markers, GLP-2 and GIP summarized into area under the curve (AUC) values, reported
as mean ± 95% confidence intervals. No statistically significant changes were observed in GLP-2, GIP or the bone turnover markers when
comparing the area under the curve at day 0 with that of day 4 or day 42
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Conclusion
Eradication of anaerobic gut bacteria in healthy adult males
had no significant short or long-term effect on serum levels
of bone turnover markers, serotonin, sex hormones or
GLP-2 in healthy non-diabetic men.
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