RESEARCH ARTICLE

Open Access

Associations between ERα/β gene polymorphisms and osteoporosis susceptibility and bone mineral density in postmenopausal women: a systematic review and meta-analysis

Heping Zhu^{1,2}, Jiannong Jiang¹, Qiang Wang¹, Jun Zong¹, Liang Zhang³, Tieliang Ma⁴, Youjia Xu^{2*} and Leiyan Zhang^{1*}

Abstract

Background: Many studies have reported associations between estrogen receptor (ER) gene polymorphisms and postmenopausal osteoporosis (PMOP) risk and bone mineral density (BMD), but the results are controversial. The aim of the present meta-analysis is to verify the association between ERα and ERβ gene polymorphisms and osteoporosis susceptibility and BMD in postmenopausal women.

Methods: PubMed, EMBASE, Web of Science, the Cochrane Library and China WeiPu Library were searched. OR and WMD with 95% CI were calculated to assess the association.

Results: Overall, no significant association was observed between ERa *Xba*l, ERa *Pvu*II and PMOP susceptibility in either overall, Caucasian or Asian populations. ERa G2014A was significantly associated with a decreased risk of PMOP in Caucasian populations. There was a significant association between ER β *Rsa*I and PMOP risk in both overall and Asian populations. Caucasian PMOP women with ERa *Xba*I XX and Xx genotypes had a higher LS Z value than women with xx genotype. ERa *Xba*I XX genotype was associated with increased FN BMD in overall and Caucasian populations, an increased FN Z value in Asians, and a decreased FN Z value in Caucasians. There was also a significant association between ERa *Xba*I Xx genotype and an increased FN Z value in either Asians or Caucasians. ERa *Pvu*II PP genotype was associated with a low LS Z value in Caucasians and a low FN BMD and Z value in Asians. Pp genotype in PMOP women was significantly correlated with low LS BMD in overall populations, a low FN Z value in either overall, Caucasian or Asian populations.

Conclusion: Each $\text{ER}\alpha$ and $\text{ER}\beta$ gene polymorphism might have different impact on PMOP risk and BMD in various ethnicities.

Keywords: Estrogen receptor, Postmenopausal osteoporosis, Gene polymorphism, Meta-analysis

Full list of author information is available at the end of the article

© The Author(s). 2018 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: xuyoujia@suda.edu.cn; 2004zhp-pp@sohu.com

²Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China

¹Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China

Background

Postmenopausal osteoporosis (PMOP) is a common metabolic bone disorder characterized by low bone mineral density (BMD) and increased fracture risks [1-3]. It is estimated that osteoporosis affects approximately 10 million American adults, with another 34 million being at high risk due to low bone mass [4].

The pathophysiology of PMOP is considered as a disorder or negative imbalance of bone metabolism and remodeling, with bone resorption outpacing bone formation [3], suggesting that vitamin D and parathyroid hormone (PTH) and other factors related to bone resorption and formation may play a key role in the underlying mechanism and pathophysiology of PMOP [5–8]. Furthermore, genetic factors including genes and gene polymorphisms may also play an important role in the development of PMOP [9].

Estrogen is another important hormone that plays an important role in the pathogenesis of PMOP, knowing that reduced ovarian production of estrogen after menopause is a cause for the initial phase of rapid bone loss and osteoporosis in women [3]. Estrogen is known as an important regulator of bone metabolism, and estrogen deficiency is believed to be the cause of BMD loss, increased mechanical loadinginduced bone remodeling, and the development of PMOP [10]. Knowing that the action of estrogen is predominantly mediated by estrogen receptor (ER), including ER α and ER β by binding to different ligands to mediate various biological effects [3, 10], more attention has been paid to the relationship between ERs and PMOP risk and BMD in postmenopausal women [11–38]. However, the results of studies currently available about this issue are controversial.

Previous meta-analyses have been performed to assess the pooled effects of ER gene polymorphisms on BMD and fracture risk [39-41]. WANG et al. [39] showed that the ERa XbaI (rs9340799) polymorphism was associated with BMD at diverse skeletal sites, and ERa PvuII (rs2234693) PP genotype played a role in protecting the lumbar spine but on the other hand might be a risk factor for the femoral neck fracture. However, to the best of our knowledge, no meta-analysis has been performed to explore the relationships between ER gene [ERα XbaI (rs9340799), ERa PvuII (rs2234693) and ERa G2014A (rs2228480)] and ER β gene [ER β AluI (rs4986938) and ERβ RsaI (rs1256049)] polymorphisms and PMOP susceptibility and BMD of the lumbar spine and femoral neck in postmenopausal women. To address these issues, we performed a meta-analysis of all currently available studies relating ER gene [ERa XbaI (rs9340799), ERα PvuII (rs2234693) and ERα G2014A (rs2228480)] and ERB gene [ERB AluI (rs4986938) and ERB RsaI (rs1256049)] polymorphisms with PMOP risk and BMD.

Methods

Data sources and searches

We searched PubMed, EMBASE, Web of Science, the Cochrane Library and China WeiPu Library to identify case-control studies that investigated the associations between ERa gene polymorphisms [ERa XbaI (rs9340799), ERa PvuII (rs2234693) and ERa G2014A (rs2228480)] ERβ gene polymorphisms [ERβ AluI (rs4986938) and ERβ RsaI (rs1256049)] and osteoporosis susceptibility and BMD in postmenopausal women by using the following search terms ('PMOP' OR 'Postmenopausal osteoporosis' OR 'Postmenopausal') AND ('Estrogen Receptor' OR 'ER') AND ('polymorphism' OR 'single nucleotide polymorphism' OR 'SNP' OR 'variation'). To analyze the pooled effects of ER gene polymorphisms on BMD, the following search terms were used: ('PMOP' OR 'Postmenopausal osteoporosis' OR 'Postmenopausal') AND ('Estrogen Receptor' OR 'ER') AND ('polymorphism' OR 'single nucleotide polymorphism' OR 'SNP' OR 'variation') AND ('BMD' OR 'bone mineral density'). Then, one-by-one screening was performed by two authors according to the inclusion and exclusion criteria. No language restrictions were applied. Secondary searches of eligible studies were conducted by searching the reference lists of the selected studies, reviews or comments.

Inclusion and exclusion criteria

The inclusion criteria of our meta-analysis are as follows: (1) case-control studies; (2) studies on BMD and fracture risks in postmenopausal women with PMOP due to estrogen deficiency using postmenopausal women without PMOP or healthy volunteers as control; (3) studies reporting alleles and genotypes of at least one of the ER gene polymorphisms in women with or without PMOP: ERa XbaI (rs9340799), ERa PvuII (rs2234693), ERa G2014A (rs2228480), ERβ AluI (rs4986938) and ERβ RsaI (rs1256049); (3) studies reporting the sample size, mean and standard deviation (SD) of BMD (g/cm²) or BMD Z value in PMOP women with at least one of the ER genotypes; and (4) studies with sufficient data. The exclusion criteria were: (1) reviews or case reports without controls, and (2) studies with no availability of current data; and (3) duplicated reports.

Data extraction

Data from the eligible studies were extracted according to the inclusion and exclusion criteria by two authors, and a consensus was reached by discussion. In the study of associations between ER gene polymorphisms and PMOP risk, the following data were collected: author list, year of publication, ethnicity, sample size, alleles, genotype of each gene polymorphism and Hardy-Weinberg equilibrium (HWE). The following data were collected for analysis of differences in BMD in PMOP women with various ER genotypes: author list, year of publication, ethnicity, the number of cases and mean and SD of BMD (g/cm^2) and BMD Z value.

Data synthesis and statistical analysis

We calculated odds ratios (OR) and 95% confidence interval (CI) to evaluate the association between ER gene polymorphisms and PMOP risk (osteoporosis occurred in postmenopausal women due to estrogen deficiency as represented by low BMD and increased fracture risks). The strength of association between ER gene polymorphisms and PMOP susceptibility was evaluated by OR and 95% CI under the allele contrast model, heterozygote model, homozygote model, dominant model and recessive model. HWE was calculated in the control population to evaluate the quality of the data by using chisquare test. Regarding the associations between BMD and ER gene polymorphisms, we compared BMD (g/ cm²) and BMD Z value in PMOP women under the heterozygote and homozygote model respectively using the weight mean difference (WMD) and 95% CI. Heterogeneity of the included studies was examined by a chisquared-based Q statistical test and quantified by I2 metric value. If I2 value was > 50% or P < 0.10, ORs and WMD were pooled by the random effect model; otherwise, the fixed effect model was used. Power analysis was performed using the Power and Precision V4 software (Biostat Inc., Englewood, USA). Sensitivity analysis was performed to assess the impact of each study on the combined effect of the present meta-analysis. Besides, subgroup analysis was also performed according to the ethnicity of the study populations. Stata 12.0 software (StataCorp, College Station, TX, USA) was used and a P< 0.05 was considered as statistically significant.

Results

Study selection and characteristics

A total of 28 studies [11-38] were finally recruited in our meta-analysis. The study selection and inclusion process is shown in Fig. 1. Fourteen studies [11-24]

reported the association between ERa XbaI and PMOP risk, and the number of the included studies that reported the alleles and genotypes of ERa PvuII, ERa G2014A, ERß AluI and ERß RsaI was 16 [11-25, 32], 4 [26-29], 4 [17, 30-32] and 2 [30, 31], respectively. Ivanova et al. [20], Albagha et al. [33], Aerssens et al. [24], Kurt et al. [34], Ge et al. [36] and Pérez et al. [19] reported both the lumbar spine and femoral neck BMD (g/cm^2) . Jeedigunta et al. [15] and Kurabayashi et al. [35] were also recruited in the assessment of the lumbar spine BMD (g/cm^2) in ER α XbaI genotypes. Ivanova et al. [20], Albagha et al. [33] and An et al. [38] reported both the lumbar spine and femoral neck Z values. Shang et al. [11] also studied the lumbar spine Z value in PMOP with ERα XbaI genotypes. Ten studies [15, 19, 20, 23, 24, 33-37] and 8 studies [19, 20, 23, 24, 33, 34, 36, 37] were recruited in the pooled analysis of differences in lumbar spine and femoral neck BMD (g/cm^2) in PMOP women carrying ERa PvuII, respectively. With regard to differences in lumbar spine and femoral neck Z value in PMOP women with ERα *Pvu*II, 4 studies [11, 20, 33, 38] and 3 studies [20, 33, 38] were included in our meta-analysis, respectively. In addition, all these studies complied with HWE. The characteristics of the included studies are shown in Tables 1, 2 and 3.

Power analysis

Before initiation of the meta-analysis, a power analysis was conducted by using the Power and Precision V4 software to verify whether the included studies could offer adequate power (> 80%). The result showed that the statistical power in our study was sufficient to detect the associations between ER gene polymorphisms and PMOP risk.

Associations between ER gene polymorphisms and PMOP risk

Overall, we did not find any significant association between ER α *Xba*I and ER α *Pvu*II polymorphisms and risk of PMOP in either overall, Caucasian or Asian populations (all *P* > 0.05) (Table 4). ER α G2014A polymorphism played a protective role in developing PMOP in Caucasian populations, while no significant association was observed in overall and Asian populations (both *P* > 0.05). All the data are shown in Table 4 and Fig. 2.

With regard to ER β polymorphism, ER β *Alu*I was significantly associated with the risk of developing PMOP in Asian postmenopausal women under the recessive model; however, we did not observe any significant association between ER β *Alu*I and PMOP risk in overall and Caucasian populations (both *P* > 0.05) (Table 4 and Fig. 3). Furthermore, we also found that there was a remarkable association between ER β *Rsa*I polymorphism

and decreased PMOP risk in overall and Asian populations (Table 4).

Associations between ER gene polymorphisms and BMD in PMOP women

ERa Xbal and lumbar spine bone mineral density (BMD g/ cm^2 and BMD Z value)

In our meta-analysis, no significant difference in lumbar spine BMD (g/cm²) was observed between PMOP women with ER α XbaI XX, ER α XbaI Xx and ER α XbaI XX genotype in either overall, Caucasian or Asian populations (all P > 0.05) (Table 5). The lumbar spine BMD Z value in Caucasian PMOP women carrying ER α XbaI XX genotype was greater than that in those carrying xx genotype, while no significant difference was observed in overall and Asian populations (both P > 0.05). ER α XbaI Xx genotype was found to be significantly associated with high lumbar spine BMD Z value in either overall or Caucasian populations but not in Asian populations.

ERa Xbal and femoral neck bone mineral density (BMD g/ cm^2 and BMD Z value)

Our pooled analyses indicated that the ERa XbaI XX genotype was significantly associated with increased femoral neck BMD in overall and Caucasian populations. In contrast, ERα XbaI XX genotype did not play a key role in femoral neck BMD in Asian populations (Table 5 and Fig. 4). Interestingly, compared with PMOP women with xx genotype, XX genotype was significantly associated with decreased femoral neck Z value in Caucasians, and increased femoral neck Z value in Asians (Table 5). However, no significant association was observed between XX genotype and the femoral neck Z value in overall populations. In addition, Caucasians and Asians carrying the ERa XbaI Xx genotype were at risk of a high femoral neck Z value, while no significant association was found in overall populations. We did not observe remarkable relationships between ERa XbaI Xx genotype and femoral neck BMD in either overall, Caucasian or Asian populations (all P > 0.05). All data are shown in Table 5.

ERa Pvull and lumbar spine bone mineral density (BMD g/ cm² and BMD Z value)

With regard to ER α *Pvu*II, the difference in the lumbar spine Z value between the PP and pp. genotypes was – 0.07 (95% CI = – 0.03 to – 0.01, *P* = 0.031) in Caucasian PMOP women; however, no significant difference was observed in overall and Asian populations. For the Pp versus pp. genotype, the difference in lumbar spine BMD was – 0.01 (95% CI = – 0.02 to – 0.00, *P* = 0.036) in overall populations, and the difference in the lumbar spine Z value was – 0.16 (95% CI = – 0.20 to – 0.12, *P* < 0.001) in Caucasian

Table 1 General characteristics of studies assciated with postmenopausal osteoporosis risk

Author	Year	Ethnicity	Sample	e Size	ERa X	'bal									HWE
					Case					Contro	I				
			Case	Control	Х	х	XX	Xx	XX	Х	х	XX	Xx	XX	
Shang et al.	2016	Asian	198	276	338	58	146	46	6	109	443	10	89	177	0.77
Wang et al.	2015	Asian	72	72	125	19	55	15	2	132	12	62	8	2	0.21
Li et al.	2014	Asian	440	791	254	626	31	192	217	404	1178	48	308	435	0.50
Erdogan et al.	2011	Caucasian	50	30	41	59	7	27	16	28	32	6	16	8	0.70
Jeedigunta et al.	2010	Asian	247	254	253	241	60	133	54	306	202	81	144	29	0.32
Tanriover et al.	2010	Caucasian	50	50	48	52	5	38	7	54	46	12	30	8	0.14
Harsløf et al.	2010	Caucasian	228	225	134	322	19	96	113	164	286	30	104	91	0.97
Musumeci et al.	2009	Caucasian	100	200	130	70	35	60	5	155	245	13	129	58	0.26
Pérez et al.	2008	Caucasian	64	68	48	80	9	30	25	46	90	5	36	27	0.13
Ivanova et al.	2007	Caucasian	220	180	256	184	73	110	37	163	197	25	113	42	0.58
Huang et al.	2006	Asian	66	116	19	113	2	15	49	46	186	4	38	74	0.74
Nam et al.	2005	Asian	6	168	0	12	0	0	6	63	273	6	51	111	0.96
Qin et al.	2004	Asian	244	273	120	368	11	98	135	137	409	13	111	149	0.18
Aerssens et al.	2000	Caucasian	135	239	92	178	14	64	57	175	303	32	111	96	0.99
Author	Year	Ethnicity	Sample	e Size	ERa P	vull									HWE
					Case					Contro	I				
			Case	Control	Ρ	р	PP	Рр	рр	Ρ	р	PP	Рр	рр	
Shang et al.	2016	Asian	198	276	156	240	28	100	70	386	166	138	110	28	0.38
Wang et al.	2015	Asian	60	60	30	90	3	24	33	32	88	3	26	31	0.40
Li et al.	2014	Asian	440	791	368	512	65	238	137	498	1084	69	360	362	0.12
Sonoda et al.	2012	Asian	114	171	118	110	24	70	20	137	205	31	75	65	0.26
Erdogan et al.	2011	Caucasian	50	30	42	58	8	26	16	38	22	10	18	2	0.11
Jeedigunta et al.	2010	Asian	247	254	181	313	50	81	116	232	276	60	112	82	0.08
Tanriover et al.	2010	Caucasian	50	50	39	61	7	25	18	48	52	14	20	16	0.79
Harsløf et al.	2010	Caucasian	228	224	198	258	46	106	76	233	215	63	107	54	0.52
Musumeci et al.	2009	Caucasian	100	200	120	80	30	60	10	186	214	31	124	45	0.53
Pérez et al.	2008	Caucasian	64	68	56	72	11	34	19	58	78	12	34	22	0.86
Ivanova et al.	2007	Caucasian	220	180	226	214	58	110	52	148	212	21	106	53	0.37
Morón et al.	2006	Caucasian	87	175	79	95	17	45	25	171	179	45	81	49	0.33
Huang et al.	2006	Asian	66	116	79	53	23	33	10	68	164	11	46	59	0.64
Nam et al.	2005	Asian	6	168	2	10	1	0	5	130	206	25	80	63	0.96
Qin et al.	2004	Asian	244	273	193	295	40	113	91	223	323	43	137	93	0.52
Aerssens et al.	2000	Caucasian	135	239	120	150	27	66	42	219	259	47	125	67	0.41
Author	Year	Ethnicity	Sample	e Size	ERa G	52014A									HWE
					Case					Contro	I				
			Case	Control	А	G	AA	GA	GG	А	G	AA	GA	GG	
Wajanavisit et al.	2015	Asian	99	113	94	104	33	28	38	179	47	72	35	6	0.53
Gómez et al.	2007	Caucasian	70	500	30	110	2	26	42	303	697	40	223	237	0.21
Ongphiphadhanakul et al.	2003	Asian	33	325	23	43	5	13	15	129	521	13	103	209	0.94
Ongphiphadhanakul et al.	2001	Asian	106	122	56	156	8	40	58	37	207	2	33	87	0.57

 Table 1 General characteristics of studies assciated with postmenopausal osteoporosis risk (Continued)

Author	Year	Ethnicity	Sampl	e Size	ERβ A	Alul									HWE
					Case					Contro	ol				
			Case	Control	А	G	AA	GA	GG	А	G	AA	GA	GG	
Shoukry et al.	2015	Caucasian	200	180	223	177	75	73	52	125	235	30	65	85	0.46
Huang et al.	2015	Asian	413	890	678	148	285	108	20	1384	396	541	302	47	0.57
Harsløf et al.	2010	Caucasian	228	224	154	302	26	102	100	186	262	35	116	73	0.32
Morón et al.	2006	Caucasian	88	177	76	100	11	54	23	146	208	34	78	65	0.23
Author	Year	Ethnicity	Sampl	e Size	ERβ <i>F</i>	Rsal									HWE
					Case					Contro	ol				
			Case	Control	А	G	AA	GA	GG	А	G	AA	GA	GG	
Shoukry et al.	2015	Caucasian	200	180	52	348	2	48	150	37	323	1	35	144	0.47
Huang et al.	2015	Asian	413	777	329	497	63	203	147	759	795	169	421	187	0.28

populations; however, we did not find any significant difference in lumbar spine BMD in either Caucasians or Asians, and in the lumbar spine Z value in overall and Asian populations (Table 5 and Fig. 5). In addition, no significant difference in lumbar spine BMD was observed between PP and pp. genotypes (P > 0.05) (Table 5).

ERa Pvull and femoral neck bone mineral density (BMD g/ $\rm cm^2$ and BMD Z value)

We further found that the ER α *Pvu*II PP genotype was associated with decreased femoral neck BMD and Z value compared with the pp. genotype in Asians, while no significant difference in femoral neck BMD and Z value was observed in either overall and Caucasian populations (both *P* > 0.05) (Table 5). Furthrmore, PMOP women carrying the Pp genotype were at risk of a low femoral neck Z value, which was found in overall, Caucasian and Asian populations. Our study showed that there was no significant difference in femoral neck BMD between PMOP women with the Pp genotype and those with the pp. genotype (*P* > 0.05). All the data are shown in Table 5.

Sensitivity analysis and publication bias

We performed a leave-one-out analysis to estimate the sensitivity of our study and found that omission of any single study did not affect the overall statistical significance, indicating that the results of our metaanalysis are stable. Therefore, we could conclude that our meta-analysis data are relatively stable and credible. To estimate the publication bias of our metaanalysis, the Begg's and Egger's test was performed (Table 4), indicating that there was minimal evidence of publication bias. The shape of funnel plot was symmetrical, which also showed no publication bias in our study (Fig. 6).

Discussion

Associations between ER α gene polymorphisms and PMOP risk

ERa XbaI and ERa PvuII are the two restriction fragment length polymorphisms of ERa gene located in Intron 1 [14]. Many studies [11-25, 32] have been performed to explore the relationships between ERa Xbal, ERa Pvull and PMOP risk; however, these studies have yielded inconsistent data [11-25, 32]. Overall, we did not observe any significant association between ERa XbaI and ERa PvuII polymorphisms and PMOP risk in either overall, Caucasian or Asian populations. In our opinion, the inadequate sample size, different ethnicities, various genotyping techniques, the presence of admixture in the population, gene-environment interactions, differences in age and measurement errors of different investigators might be important factors contributing to these controversial results. ERa XbaI and ERa PvuII have proven to play key roles in attainment and maintenance of peek bone mass during young adulthood, and it might be difficult to document their effects in a population of postmenopausal women [24]. In addition, PvuII and XbaI polymorphisms are located in a non-functional area of the ER gene [20], which might also contribute to our polled results. With regard to ERa G2014A, it is located on the exon region of chromosome 6p25.1, and may contribute via the epigenetic level for the efficiency of translation or receptor protein expression [26]. Our results showed that a significant association between ERa G2014A and PMOP risk was observed only in Caucasian populations but not in overall and Asian populations.

Associations between $\text{ER}\beta$ gene polymorphisms and PMOP risk

 $ER\beta$ has been found to be more abundant than $ER\alpha$ in trabecular bone, and more potent than $ER\alpha$ in

Table 2 Charact	teristics	of include	d stu	dies of lumb	ar spin	e BMD, femor	ral nec	ik BMD, lumb	ar spine Z value	e and f	emoral nec	k Z <	alue in ER α X	ʻbal g	enotypes		
ERa <i>Xba</i> l			Lur	nbar Spine BMI) (g/cn	n ²)			ERa <i>Xba</i> l			Fem	oral Neck BMD) (g/cn	n ²)		
			\scriptstyle		×		×					$\stackrel{\scriptstyle imes}{\scriptstyle \sim}$		×		×	
Author	Year	Ethnicity	z	Mean ± SD	z	Mean ± SD	z	Mean±SD	Author	Year	Ethnicity	z	Mean ± SD	z	Mean ± SD	z	Mean ± SD
lvanova et al.	2007	Caucasian	73	0.75 ± 0.17	110	0.81 ± 0.06	37	0.87 ± 0.07	lvanova et al.	2007	Caucasian	73	0.69 ± 0.08	110	0.69 ± 0.04	37	0.65 ± 0.03
Albagha et al.	2001	Caucasian	27	0.88 ± 0.03	89	0.88 ± 0.02	90	0.85 ± 0.02	Albagha et al.	2001	Caucasian	27	0.77 ± 0.03	89	0.73 ± 0.01	60	0.72 ± 0.02
Aerssens et al.	2000	Caucasian	14	0.94 ± 0.21	64	0.93 ± 0.22	57	0.88 ± 0.16	Aerssens et al.	2000	Caucasian	4	0.73 ± 0.03	64	0.68 ± 0.09	57	0.70 ± 0.20
Jeedigunta et al.	2010	Asian	60	0.89 ± 0.15	133	0.86 ± 0.13	54	0.64 ± 0.16	Kurt et al.	2012	Caucasian	41	0.79 ± 0.09	94	0.8 ± 0.08	40	0.83 ± 0.10
Kurt et al.	2012	Caucasian	41	0.95 ± 0.12	94	0.92 ± 0.12	40	0.93 ± 0.10	Ge et al.	2006	Asian	37	0.70 ± 0.10	134	0.68 ± 0.07	26	0.67 ± 0.07
Kurabayashi et al.	1999	Asian	. 	1.18 ± 0.00	20	0.92 ± 0.04	61	0.92 ± 0.02	Pérez et al.	2008	Caucasian	7	0.59 ± 0.02	36	0.58 ± 0.01	20	0.56 ± 0.02
Ge et al.	2006	Asian	37	0.73 ± 0.08	134	0.74 ± 0.09	26	0.75 ± 0.13									
Pérez et al.	2008	Caucasian	~	0.70 ± 0.02	31	0.67 ± 0.02	24	0.66 ± 0.02									
ERa <i>Xba</i> l			Lur	nbar Spine Z vi	alue				ERa <i>Xba</i> l			Fem	oral Neck Z va	lue			
			\scriptstyle		×		×					$\stackrel{\scriptstyle \scriptstyle \succ}{\scriptstyle}$		××		×	
Author	Year	Ethnicity	z	Mean ± SD	Z	Mean ± SD	z	Mean ± SD	Author	Year	Ethnicity	z	Mean ± SD	z	Mean ± SD	z	Mean ± SD
Shang et al.	2016	Asian	146	-1.98 ± 0.91	146	-1.65 ± 0.02	9	-0.35 ± 2.19	lvanova et al.	2007	Caucasian	73	-2.00 ± 0.00	110	-2.00 ± 0.00	37	-1.90 ± 0.00
lvanova et al.	2007	Caucasian	73	-2.10 ± 0.00	110	-0.6 ± 0.00	37	-0.1 ± 0.00	Albagha et al.	2001	Caucasian	27	-2.00 ± 0.23	89	-0.42 ± 0.10	6	-0.52 ± 0.12
Albagha et al.	2001	Caucasian	27	-0.34 ± 0.20	89	-0.29 ± 0.11	6	-0.47 ± 0.11	An et al.	2000	Asian	10	0.42 ± 0.57	84	0.11 ± 0.66	152	-0.32 ± 0.76
An et al.	2000	Asian	10	0.48 ± 0.49	84	0.12 ± 0.85	152	-0.26 ± 0.58									

Table 3 Charact	eristics	of included	d stud	dies of lumb.	ar spin	e BMD, femoi	ral nec	ck BMD, lumb	ar spine Z valu	e and i	emoral neo	× Z <	alue in ERa F	vull g	enotypes		
ERa Pvull			Lun	nbar Spine BM	D (g/cr	n²)			ERa Pvull			Fem	oral Neck BMD	(g/cm	²)		
			Ы		Рр		dd					Ы		Рр		dc	
Author	Year	Ethnicity	z	Mean±SD	z	Mean±SD	Z	Mean ± SD	Author	Year	Ethnicity	z	Mean±SD	z	Mean ± SD	7	Mean ± SD
lvanova et al.	2007	Caucasian	58	0.70 ± 0.09	110	0.71 ± 0.10	52	0.77 ± 0.06	lvanova et al.	2007	Caucasian	58	0.52 ± 0.02	110	0.68 ± 0.01	52	0.76 ± 0.05
Albagha et al.	2001	Caucasian	37	0.87 ± 0.03	102	0.86 ± 0.02	67	0.88 ± 0.02	Albagha et al.	2001	Caucasian	37	0.75 ± 0.02	102	0.71 ± 0.01	22	0.75 ± 0.02
Aerssens et al.	2000	Caucasian	27	0.93 ± 0.18	99	0.91 ± 0.22	42	0.89 ± 0.17	Aerssens et al.	2000	Caucasian	27	0.69 ± 0.06	99	0.70 ± 0.09	42	0.69 ± 0.11
Jeedigunta et al.	2010	Asian	50	0.92 ± 0.18	81	0.89 ± 0.11	116	0.81 ± 0.14	Kurt et al.	2012	Caucasian	4	0.77 ± 0.08	104	0.81 ± 0.09	46	0.82 ± 0.09
Kurt et al.	2012	Caucasian	4	0.93 ± 0.13	104	0.93 ± 0.11	46	0.93 ± 0.09	Ge et al.	2006	Asian	38	0.68 ± 0.09	93	0.67 ± 0.07	57	0.69 ± 0.08
Kurabayashi et al.	1999	Asian	19	0.99 ± 0.04	27	0.89 ± 0.03	36	0.91 ± 0.02	Ge et al.	2006	Asian	38	0.68 ± 0.09	92	0.67 ± 0.08	57	0.69 ± 0.08
Ge et al.	2006	Asian	38	0.73 ± 0.10	93	0.74 ± 0.09	67	0.75 ± 0.10	Qin et al.	2004	Asian	40	0.57 ± 0.01	113	0.60 ± 0.01	91	0.59 ± 0.01
Ge et al.	2006	Asian	38	0.73 ± 0.10	92	0.74 ± 0.09	67	0.75 ± 0.10	Pérez et al.	2008	Caucasian	6	0.59 ± 0.01	37	0.57 ± 0.01	16	0.57 ± 0.02
Qin et al.	2004	Asian	40	0.70 ± 0.01	113	0.70 ± 0.01	91	0.72 ± 0.01									
Pérez et al.	2008	Caucasian	;-	0.73 ± 0.03	34	0.66 ± 0.02	17	0.65 ± 0.02									
ERa Pvull			Lum	nbar Spine Z v	alue				ERa Pvull			Fem	oral Neck Z val	ne			
			Ы		Рр		dd					Ы		Рр		dc	
Author	Year	Ethnicity	z	Mean ± SD	z	Mean ± SD	z	Mean ± SD	Author	Year	Ethnicity	z	Mean±SD	z	Mean ± SD	7	Mean ± SD
Shang et al.	2016	Asian	28	-1.54 ± 0.35	100	-1.67 ± 0.91	70	-2.79 ± 1.46	lvanova et al.	2007	Caucasian	58	-2.00 ± 0.00	110	-1.90 ± 0.00	52	-0.70 ± 0.00
lvanova et al.	2007	Caucasian	58	-2.40 ± 0.00	110	-2.10 ± 0.00	52	-1.50 ± 0.00	Albagha et al.	2001	Caucasian	37	-0.29 ± 0.17	102	-0.59 ± 0.09	57	-0.28 ± 0.15
Albagha et al.	2001	Caucasian	37	-0.35 ± 0.16	102	-0.44 ± 0.10	67	-0.28 ± 0.14	An et al.	2000	Asian	53	-0.48 ± 0.90	128	-0.19 ± 0.80	128	0.31 ± 0.49
An et al.	2000	Asian	53	-0.53 ± 0.16	128	-0.21 ± 0.99	65	0.22 ± 0.46									

ERa G2014A

4

0.89

0.32-2.51

Overall

A vs. G

Comparison	Ν	Test of	association		Model	Test of hete	rogeneity	Begg's test	Egger's test
		OR	95% CI	P value		P value	l ² (%)	P value	P value
ERa <i>Xba</i> l									
Overall	14								
X vs. x		1.21	0.73-2.00	0.455	R	< 0.001	96.4	0.584	0.955
XX vs. xx		1.84	0.71-4.75	0.206	R	< 0.001	93.7	0.443	0.465
Xx vs. xx		1.19	0.83-1.70	0.357	R	< 0.001	80.1	0.511	0.610
Xx/XX vs. xx		1.34	0.82-2.18	0.240	R	< 0.001	90.4	0.661	0.545
XX vs. Xx/xx		1.50	0.70-3.24	0.296	R	< 0.001	93.4	0.443	0.875
Caucasian	7								
X vs. x		1.15	0.76-1.74	0.510	R	< 0.001	88.0		
XX vs. xx		1.56	0.56-4.39	0.399	R	< 0.001	88.9		
Xx vs. xx		1.13	0.76-1.67	0.540	R	0.021	59.8		
Xx/XX vs. xx		1.24	0.76-2.01	0.387	R	< 0.001	76.2		
XX vs. Xx/xx		1.30	0.56-3.03	0.536	R	< 0.001	88.2		
Asian	7								
X vs. x		1.23	0.47-3.25	0.668	R	< 0.001	98.0		
XX vs. xx		2.18	0.37-12.73	0.388	R	< 0.001	98.1		
Xx vs. xx		1.22	0.63-2.36	0.553	R	< 0.001	88.0		
Xx/XX vs. xx		1.39	0.56-3.46	0.481	R	< 0.001	94.6		
XX vs. Xx/xx		1.77	0.44-7.14	0.424	R	< 0.001	96.0		
ERa <i>Pvu</i> ll									
Overall	16								
P vs. p		0.96	0.71-1.29	0.769	R	< 0.001	92.3	0.753	0.616
PP vs. pp		0.99	0.55-1.78	0.961	R	< 0.001	90.8	1.000	0.886
Pp vs. pp		1.01	0.72-1.41	0.956	R	< 0.001	82.3	0.753	0.501
PP/Pp vs. pp		0.97	0.65-1.43	0.868	R	< 0.001	88.7	0.893	0.539
PP vs. Pp/pp		0.99	0.65-1.53	0.977	R	< 0.001	87.3	0.893	0.976
Caucasian	8								
P vs. p		0.95	0.71-1.26	0.716	R	< 0.001	79.2		
PP vs. pp		0.93	0.49-1.79	0.831	R	< 0.001	81.4		
Pp vs. pp		0.98	0.73-1.31	0.877	R	0.112	40.0		
PP/Pp vs. pp		0.97	0.67-1.39	0.861	R	0.008	63.5		
PP vs. Pp/pp		0.97	0.59-1.58	0.895	R	< 0.001	78.2		
Asian	8								
P vs. p		0.97	0.57-1.66	0.919	R	< 0.001	95.6		
PP vs. pp		1.08	0.40-2.96	0.877	R	< 0.001	94.4		
Pp vs. pp		1.04	0.58–1.88	0.889	R	< 0.001	90.2		
PP/Pp vs. pp		0.98	0.50-1.95	0.962	R	< 0.001	93.8		
PP vs. Pp/pp		1.05	0.50-2.20	0.891	R	< 0.001	91.8		

0.825

R

< 0.001

Table 4 Results of genetic models for ERa Xbal,	ERa <i>Pvu</i> II, ERa G2014A	, ERβ <i>Alu</i> I and ERβ <i>Rsa</i> I	polymorphisms and osteoporosis
susceptibility in postmenopausal women			

0.237

Comparison	Ν	Test of	association		Model	Test of hete	rogeneity	Begg's test	Egger's test
		OR	95% CI	P value		P value	l ² (%)	P value	P value
AA vs. GG		0.88	0.08-9.19	0.912	R	< 0.001	92.9	0.734	0.419
GA vs. GG		0.76	0.28-2.03	0.581	R	< 0.001	88.1	0.734	0.530
GA/AA vs. GG		0.73	0.22-2.41	0.601	R	< 0.001	92.8	0.734	0.530
AA vs. GA/GG		1.13	0.23-5.72	0.878	R	< 0.001	88.6	0.734	0.299
Caucasian	1								
A vs. G		0.63	0.41-0.96	0.032	R	-	-		
AA vs. GG		0.28	0.07-1.21	0.089	R	-	-		
GA vs. GG		0.66	0.39–1.11	0.116	R	-	-		
GA/AA vs. GG		0.60	0.36-1.00	0.050	R	-	-		
AA vs. GA/GG		0.34	0.08-1.43	0.141	R	-	-		
Asian	3								
A vs. G		1.00	0.23-4.46	0.996	R	< 0.001	96.6		
AA vs. GG		1.28	0.05-30.10	0.878	R	< 0.001	95.2		
GA vs. GG		0.77	0.17-3.45	0.736	R	< 0.001	91.3		
GA/AA vs. GG		0.76	0.12-4.62	0.765	R	< 0.001	94.8		
AA vs. GA/GG		1.69	0.20-14.27	0.630	R	< 0.001	92.2		
ERβ <i>Alu</i> I									
Overall	4								
A vs. G		1.25	0.78-2.00	0.362	R	< 0.001	91.5	1.000	0.997
AA vs. GG		1.27	0.52-3.13	0.597	R	< 0.001	88.4	0.734	0.647
GA vs. GG		1.16	0.65-2.07	0.606	R	0.001	81.0	0.734	0.408
GA/AA vs. GG		1.29	0.66-2.53	0.459	R	< 0.001	87.8	0.734	0.612
AA vs. GA/GG		1.21	0.65-2.24	0.553	R	< 0.001	85.7	0.497	0.646
Caucasian	3								
A vs. G		1.23	0.58–2.57	0.590	R	< 0.001	94.3		
AA vs. GG		1.28	0.34-4.84	0.717	R	< 0.001	92.2		
GA vs. GG		1.30	0.60-2.78	0.504	R	0.001	86.5		
GA/AA vs. GG		1.36	0.55-3.39	0.507	R	< 0.001	91.8		
AA vs. GA/GG		1.10	0.37-3.22	0.863	R	< 0.001	90.3		
Asian	1								
A vs. G		1.31	1.06-1.62	0.012	R	-	-		
AA vs. GG		1.24	0.72-2.13	0.441	R	-	-		
GA vs. GG		0.84	0.48-1.48	0.548	R	-	-		
GA/AA vs. GG		1.10	0.64–1.87	0.739	R	-	-		
AA vs. GA/GG		1.44	1.12-1.84	0.004	R	-	-		
ERβ <i>Rsa</i> l									
Overall	2								
A vs. G		0.92	0.50-1.70	0.785	R	0.010	85.0		
AA vs. GG		0.49	0.34-0.70	< 0.001	F	0.261	20.9		
GA vs. GG		0.87	0.41-1.84	0.722	R	< 0.001	85.9		
GA/AA vs. GG		0.85	0.37-1.95	0.704	R	< 0.001	88.9		

Table 4 Results of genetic models for ERα *Xba*l, ERα *Pvull*, ERα G2014A, ERβ *Alul* and ERβ *Rsa*l polymorphisms and osteoporosis susceptibility in postmenopausal women (*Continued*)

Comparison	Ν	Test of	association		Model	Test of hete	rogeneity	Begg's test	Egger's test
		OR	95% CI	P value		P value	l ² (%)	P value	P value
AA vs. GA/GG		0.66	0.48-0.90	0.009	F	0.408	0		
Caucasian	1								
A vs. G		1.30	0.83-2.04	0.245	R	-	-		
AA vs. GG		1.92	0.17-21.41	0.596	F	-	-		
GA vs. GG		1.32	0.80-2.15	0.273	R	-	-		
GA/AA vs. GG		1.33	0.82-2.17	0.246	R	-	-		
AA vs. GA/GG		1.81	0.16-20.11	0.630	F	-	-		
Asian	1								
A vs. G		0.69	0.58-0.82	< 0.001	R	-	-		
AA vs. GG		0.47	0.33-0.68	< 0.001	F	-	-		
GA vs. GG		0.61	0.47-0.81	< 0.001	R	-	-		
GA/AA vs. GG		0.57	0.44-0.74	< 0.001	R	-	-		
AA vs. GA/GG		0.65	0.47-0.89	0.007	F	-	-		

Table 4 Results of genetic models for ERa *Xbal*, ERa *Pvull*, ERa G2014A, ERß *Alul* and ERß *Rsal* polymorphisms and osteoporosis susceptibility in postmenopausal women (*Continued*)

R Random effect model

F Fixed effect model

mediating estrogen-induced repression of TNF- α expression, which is considered an important contributor to PMOP [30]. ER β *Alu*I is one of the widelystudied ER β gene polymorphisms, knowing that it could alter mRNA stability and protein levels, leading to reduced synthesis of ER β [30]. In our study, ER β *Alu*I was found to be significantly associated with increased risk of PMOP in Asian populations, while no significant relationship was observed in overall and Caucasian populations. Thus, different genetic backgrounds, environmental effects and/or their internal interactions could explain the diverse results in various ethnicities. ER β *Rsa*I is another important polymorphism of ER β . Our subgroup analysis revealed a significant association between ER β *Rsa*I and PMOP risk in overall populations, which is consistent with the studies of Shoukry et al. [30], and Huang et al. [31].

Associations between ERa Xba and lumbar spine and femoral neck BMD

Our pooled results showed that there was no significant difference in lumbar spine BMD between PMOP women carrying XX, Xx and xx genotype in either overall, Caucasian or Asian populations. However, WANG et al. [39] reported that the *Xba*I

of PMOP (GA/AA vs. GG)

polymorphism was significantly associated with BMD of the lumbar spine, and XX had a protective effect in comparison with carriers of the x alleles, which is consistent with the report of Ioannidis et al. [41]. Both WANG and Ioannidis included all types of osteoporotic patients, not only postmenopausal women, which might be the most important reason for the difference between our results and theirs. As mentioned above, ER α XbaI might not play a key role in attainment and maintenance of peek bone mass in postmenopausal women [24], and therefore it could be easily understood why no significant association was observed between ERa XbaI and lumbar spine BMD. With regard to femoral neck BMD, our study indicated that the femoral neck BMD in PMOP women with XX genotype was significantly higher than that in women with xx genotype in overall and Caucasian populations, which highlights the theory that ERa gene is involved in the pathogenesis of PMOP. No significant difference of femoral neck BMD was observed between PMOP women with Xx and xx genotype in each subgroup. Although no significant association was observed between lumbar spine BMD and ERa XbaI, we found that the lumbar spine Z value in both PMOP women carrying XX and those carrying Xx genotype was significantly higher than that in Caucasians carrying xx genotype. We also observed that XX genotype was associated with a low femoral neck Z value in Caucasians and high femoral neck Z value in Asians. In addition, Caucasians and Asians carrying Xx genotype were at risk of a high femoral neck Z value. However, why ERa XbaI plays a contradictory role in BMD and Z value at the lumar spine and femoral neck, and the mechanisms by which it is associated with BMD and Z value remains unclear and needs further investigation.

Associations between ERa *Pvull* and lumbar spine and femoral neck BMD

Although the molecular mechanism underlying the effect of ERa PvuII on bone mass is poorly understood, it is believed that $ER\alpha PvuII$ might play a key role in BMD as it is in linkage disequilibrium with the TA polymorphism in the ER promoter that is associated with altered gene transcription [20]. Our pooled analysis indicated that PMOP women with the Pp genotype had lower lumbar spine BMD than those with the pp. genotype. We also found that there was no significant difference in lumbar spine BMD between women with the PP genotype and those with the pp. genotype, which is consistent with the meta-analysis of Wang et al. [40]. Furthermore, we observed that the PP genotype was associated with decreased femoral neck BMD in Asians, while Pp might not play a key role in femoral neck BMD in all subgroups. Interestingly, WANG et al. [39] reported that PP play a role in protecting the lumbar spine but on the other hand it might be a risk factor for the femoral neck fracture. Wang CL [40] and WANG KJ [39] conducted their meta-analyses on osteoporotic women during menopause while our study included osteoporotic women post menopause, which might be the most important reason for the difference between our study and theirs. In addition, both PP and Pp genotypes were significantly associated with low lumbar spine Z value in Caucasians,

Table 5 Meta-analysis of differences of Lumbar Spine BMD, Femoral Neck BMD, Lumbar Spine Z value and Femoral Neck Z value between each genotype of ERa *Xba*l and ERa *Pvull* polymorphism

ERa <i>Xba</i> l	XX	VS. XX					Xx ۱	/S. XX				
	Test	of differences		Model	Test of heteroge	eneity	Test	of differences		Model	Test of heteroge	eneity
	Ν	WMD (95% CI)	P value		P value	l ² (%)	Ν	WMD (95% CI)	P value		P value	l ² (%)
Lumbar Spine	BMD	(g/cm ²)										
Overall	8	0.03 (-0.02, 0.08)	0.198	R	< 0.001	94.2	8	0.02 (- 0.00, 0.05)	0.086	R	< 0.001	94.1
Caucasian	5	0.00 (-0.04, 0.04)	0.917	R	< 0.001	90.2	5	0.00 (-0.02, 0.02)	0.862	R	< 0.001	91.1
Asian	3	0.11 (-0.16, 0.38)	0.414	R	< 0.001	97.8	3	0.07 (-0.07, 0.20)	0.326	R	< 0.001	97.3
Lumbar Spine	e Z val	ue										
Overall	3	0.22 (-0.40, 0.83)	0.495	R	< 0.001	88.5	3	0.24 (0.00, 0.47)	0.046	R	0.041	68.6
Caucasian	1	0.13 (0.05, 0.21)	0.001	R	-	-	1	0.18 (0.15, 0.21)	< 0.001	R	-	-
Asian	2	-0.28 (-2.58, 2.02)	0.811	R	0.009	85.2	2	-0.23 (- 1.81, 1.36)	0.780	R	0.062	71.3
Femoral Neck	BMD	(g/cm ²)										
Overall	6	0.03 (0.01, 0.05)	0.003	R	0.001	75.5	6	0.01 (-0.00, 0.03)	0.057	R	< 0.001	84.7
Caucasian	5	0.03 (0.01, 0.05)	0.009	R	< 0.001	80.4	5	0.01 (-0.00, 0.03)	0.094	R	< 0.001	87.7
Asian	1	0.03 (-0.01, 0.08)	0.110	R	-	-	1	0.01 (-0.02, 0.04)	0.350	R	-	-
Femoral Neck	: Z val	ue										
Overall	2	-0.38 (-2.56, 1.80)	0.733	R	< 0.001	99.2	2	0.25 (-0.07, 0.58)	0.130	R	0.001	91.6
Caucasian	1	-1.48 (-1.57, -1.39)	< 0.001	R	-	-	1	0.10 (0.07, 0.13)	< 0.001	R	-	-
Asian	1	0.74 (0.37, 1.11)	< 0.001	R	-	-	1	0.43 (0.24, 0.62)	< 0.001	R	-	-
ERa <i>Pvu</i> ll	PP۱	vs. pp					Pp	vs. pp				
	Test	of differences		Model	Test of heteroge	eneity	Test	of differences		Model	Test of heteroge	eneity
	Ν	WMD (95% CI)	P value		P value	l ² (%)	Ν	WMD (95% CI)	P value		P value	l ² (%)
Lumbar Spine	BMD	(g/cm ²)										
Overall	10	0.02 (-0.01, 0.04)	0.216	R	< 0.001	95.5	10	-0.01 (-0.02, -0.00)	0.036	R	< 0.001	84.0
Caucasian	5	0.01 (-0.04, 0.06)	0.793	R	< 0.001	95.5	5	-0.02 (- 0.03, 0.00)	0.106	R	< 0.001	84.9
Asian	5	0.03 (-0.02, 0.08)	0.288	R	< 0.001	96.2	5	-0.00 (- 0.02, 0.02)	0.912	R	< 0.001	86.4
Lumbar Spine	e Z val	ue										
Overall	3	0.11 (-0.55, 0.78)	0.742	R	< 0.001	98.7	3	0.13 (-0.40, 0.67)	0.623	R	< 0.001	95.9
Caucasian	1	-0.07 (-0.13, -0.01)	0.031	R	-	-	1	- 0.16 (- 0.20, - 0.12)	< 0.001	R	-	-
Asian	2	0.24 (-1.72, 2.20)	0.809	R	< 0.001	99.0	2	0.34 (-1.18, 1.85)	0.665	R	< 0.001	97.9
Femoral Neck	BMD	(g/cm ²)										
Overall	8	-0.04 (-0.09, 0.01)	0.135	R	< 0.001	99.3	8	-0.02 (- 0.04, 0.01)	0.132	R	< 0.001	98.2
Caucasian	5	-0.06 (-0.16, 0.05)	0.295	R	< 0.001	99.6	5	-0.03 (- 0.05, 0.00)	0.054	R	< 0.001	95.2
Asian												
	3	-0.01 (-0.02, -0.01)	< 0.001	R	1.000	0.00	3	-0.00 (- 0.03, 0.02)	0.768	R	0.009	78.7
Femoral Neck	3 : Z val	-0.01 (-0.02, -0.01) ue	< 0.001	R	1.000	0.00	3	-0.00 (- 0.03, 0.02)	0.768	R	0.009	78.7
Femoral Neck Overall	3 : Z val 2	-0.01 (-0.02, -0.01) ue -0.39 (-1.15, 0.37)	< 0.001 0.315	R	1.000 < 0.001	0.00 97.0	3 2	-0.00 (- 0.03, 0.02) -0.39 (- 0.57, - 0.20)	0.768	R	0.009	78.7 80.3
Femoral Neck Overall Caucasian	3 : Z val 2 1	-0.01 (-0.02, -0.01) ue -0.39 (-1.15, 0.37) -0.01 (-0.08, 0.05)	< 0.001 0.315 0.718	R R R	1.000 < 0.001 -	0.00 97.0 -	3 2 1	-0.00 (- 0.03, 0.02) -0.39 (- 0.57, - 0.20) -0.31 (- 0.35, - 0.27)	0.768 < 0.001 < 0.001	R R R	0.009 0.024 -	78.7 80.3 -

R Random effect model

F Fixed effect model

but not in overall and Asian populations, probably because of the different genetic backgrounds in various ethnicities and interactions between genetic and non-genetic factors. PMOP women with the PP and Pp genotypes had lower femoral neck Z value than those with the pp. genotype in overall, Caucasian and Asian populations.

Limitations

Although we performed a comprehensive analysis of the association between $ER\alpha$, $ER\beta$ gene polymorphisms and PMOP risk and BMD in postmenopausal women, there are some limitations that should be addressed. First, high heterogeneity was observed in some of our pooled results, which might have negative impact on our conclusions. Second, PMOP is a disease whose etiology might be involved in several confounding factors, and other confounding factors such as age, years since menopause and estrogen therapy might interact with each other and play a key role in the etiology and progression of PMOP. However, no data available could be used in all recruited

studies to detect the interactions between these confounding factors in PMOP patients. We should take all these confounding factors into consideration in our study rather than studying them separately, which is also a limitation of our meta-analysis. Third, we failed to perform a pooled analysis to detect whether ER α G2014A, ER β *AluI* and ER β *RsaI* were correlated with BMD in postmenopausal women as no sufficient data could be collected and analyzed. Therefore, largerscale and better-designed studies are necessary to determine the association between ER α/β gene polymorphisms and PMOP risk and BMD in postmenopausal women.

Conclusion

 $ER\alpha/\beta$ gene polymorphisms were significantly associated with PMOP risk and BMD in postmenopausal women, but each $ER\alpha/\beta$ gene polymorphism may have a distinct effect on PMOP risk and BMD in Asian and Caucasian populations.

Abbreviations

BMD: Bone mineral density; CI: Confidence interval; ER: Estrogen receptor; Lactase: LCT; OR: Odds ratios; PMOP: Postmenopausal Osteoporosis; PTH: Parathyroid Hormone; TGF- β : Transforming growth factor- β ; WMD: Weight mean difference

Acknowledgements

Not applicable

Funding

No

Availability of data and materials

In publicly available repositories

Authors' contributions

HPZ and JNJ participated in the study design. QW and JZ made contributions to the data collection. LZ, YJX and TLM were responsible for the statistical analysis. HPZ and LYZ participated in the writting and LYZ was also responsible for the final proofing. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

¹Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China. ²Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China. ³Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou 225001, China. ⁴Central Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China.

Received: 13 June 2017 Accepted: 17 January 2018 Published online: 20 February 2018

References

- Gokosmanoglu F, Varim C, Atmaca A, Atmaca MH, Colak R. The effects of zoledronic acid treatment on depression and quality of life in women with postmenopausal osteoporosis: a clinical trial study. Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences. 2016;21:112.
- Bandeira L, Bilezikian JP. Novel therapies for postmenopausal osteoporosis. Endocrinol Metab Clin N Am. 2017;46(1):207–19.
- Eastell R, O'Neill TW, Hofbauer LC, Langdahl B, Reid IR, Gold DT, Cummings SR. Postmenopausal osteoporosis. Nature reviews Disease primers. 2016;2: 16069.
- Wensel TM, Iranikhah MM, Wilborn TW. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. Pharmacotherapy. 2011;31(5):510–23.
- Paschalis EP, Gamsjaeger S, Hassler N, Fahrleitner-Pammer A, Dobnig H, Stepan JJ, Pavo I, Eriksen EF, Klaushofer K. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality. Bone. 2017;95: 41–6.
- Ebina K, Kashii M, Hirao M, Hashimoto J, Noguchi T, Koizumi K, Kitaguchi K, Matsuoka H, Iwahashi T, Tsukamoto Y, et al. Comparison of the effects of denosumab between a native vitamin D combination and an active vitamin D combination in patients with postmenopausal osteoporosis. J Bone Miner Metab. 2016;
- Safer U, Safer VB, Demir SO, Yanikoglu I. Effects of bisphosphonates and calcium plus vitamin-D supplements on cognitive function in postmenopausal osteoporosis section sign. Endocrine, metabolic & immune disorders drug targets. 2016;16(1):56–60.
- Gennari L, Rotatori S, Bianciardi S, Nuti R, Merlotti D. Treatment needs and current options for postmenopausal osteoporosis. Expert Opin Pharmacother. 2016;17(8):1141–52.
- Xie W, Ji L, Zhao T, Gao P. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray. Medical science monitor : international medical journal of experimental and clinical research. 2015;21: 1333–44.
- Macari S, Ajay Sharma L, Wyatt A, Knowles P, Szawka RE, Garlet GP, Grattan DR, Dias GJ, Silva TA. Osteoprotective effects of estrogen in the maxillary bone depend on ERalpha. J Dent Res. 2016;95(6):689–96.
- Shang DP, Lian HY, Fu DP, Wu J, Hou SS, Lu JM. Relationship between estrogen receptor 1 gene polymorphisms and postmenopausal osteoporosis of the spine in Chinese women. Genetics and molecular research : GMR. 2016;15(2)
- Wang ZR. Age diference of estrogen receptor gene polymorphisms in the elderly women with hip osteoporosis. Chin. J.of Tissue Engmeenng Res. 2015;19(7):991–5.
- Hai L, Jishen X, Bingpu C, Hailing H, Jinhua W, Jianhai C, xiaoyan F. Estrogen receptor- alpha gene Pvull, Xbal polymorphism, camellia oil and postmenopausal osteoporosis relevance in Guangxi Zhuang. Chinese. J Anat. 2014;37(5):581–4.
- 14. Erdogan MO, Yildiz H, Artan S, Solak M, Tascioglu F, Dundar U, Eser B, Colak E. Association of estrogen receptor alpha and collagen type I alpha 1 gene polymorphisms with bone mineral density in postmenopausal women. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2011;22(4):1219–25.
- Jeedigunta Y, Bhoomi Reddy PR, Kolla VK, Munshi A, Ananthapur V, Narasimulu G, Akka J. Association of estrogen receptor alpha gene polymorphisms with BMD and their affect on estradiol levels in pre- and postmenopausal women in south Indian population from Andhra Pradesh. Clin. Chim. Acta ; Int. J. of clin. Chem. 2010;411(7–8):597–600.
- Durusu Tanriover M, Bora Tatar G, Uluturk TD, Dayangac Erden D, Tanriover A, Kilicarslan A, Oz SG, Erdem Yurter H, Sozen T, Sain Guven G. Evaluation of the effects of vitamin D receptor and estrogen receptor 1 gene polymorphisms on bone mineral density in postmenopausal women. Clin Rheumatol. 2010;29(11):1285–93.

- Harslof T, Husted LB, Carstens M, Stenkjaer L, Langdahl BL. Genotypes and haplotypes of the estrogen receptor genes, but not the retinoblastomainteracting zinc finger protein 1 gene, are associated with osteoporosis. Calcif Tissue Int. 2010;87(1):25–35.
- Musumeci M, Vadala G, Tringali G, Insirello E, Roccazzello AM, Simpore J, Musumeci S. Genetic and environmental factors in human osteoporosis from sub-Saharan to Mediterranean areas. J Bone Miner Metab. 2009;27(4): 424–34.
- Perez A, Ulla M, Garcia B, Lavezzo M, Elias E, Binci M, Rivoira M, Centeno V, Alisio A, Tolosa de Talamoni N. Genotypes and clinical aspects associated with bone mineral density in argentine postmenopausal women. J Bone Miner Metab. 2008;26(4):358–65.
- Ivanova JT, Doukova PB, Boyanov MA, Popivanov PR. Pvull and Xbal polymorphisms of the estrogen receptor gene and bone mineral density in a Bulgarian population sample. Hormones (Athens, Greece). 2007;6(1):36–43.
- Wang W, Fu SJ, Wang XS, Zhang YP, Wang SW, Zhong B. The relationship between ER gene polymorphisms and postmenopause osteoporosis of spine in southern Chinese women. Jurnal of Clinical Orthopsedics. 2006;9(6): 562–5.
- Nam HS, Shin MH, Kweon SS, Park KS, Sohn SJ, Rhee JA, Choi JS, Son MH. Association of estrogen receptor-alpha gene polymorphisms with bone mineral density in postmenopausal Korean women. J Bone Miner Metab. 2005;23(1):84–9.
- Qin YJ, Zhang ZL, Huang QR, He JW, Zhou Q, Hu YQ, Li M, Liu YJ. Association of ER alpha gene Pvull and Xbal polymorphisms and related factors with osteoporosis in postmenopausal women: a case-control study. Chin J Geriatr. 2004;23(6):380–3.
- 24. Aerssens J, Dequeker J, Peeters J, Breemans S, Broos P, Boonen S. Polymorphisms of the VDR, ER and COLIA1 genes and osteoporotic hip fracture in elderly postmenopausal women. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2000;11(7):583–91.
- Sonoda T, Takada J, Iba K, Asakura S, Yamashita T, Mori M. Interaction between ESRα polymorphisms and environmental factors in osteoporosis. J Orthop Res. 2012;30(10):1529–34.
- 26. Wajanavisit W, Suppachokmongkorn S, Woratanarat P, Ongphiphadhanakul B, Tawonsawatruk T. The association of bone mineral density and G2014A polymorphism in the estrogen receptor alpha gene in osteoporotic hip fracture in Thai population. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. 2015;98(Suppl 8):S82–7.
- Gomez R, Magana JJ, Cisneros B, Perez-Salazar E, Faugeron S, Veliz D, Castro C, Rubio J, Casas L, Valdes-Flores M. Association of the estrogen receptor alpha gene polymorphisms with osteoporosis in the Mexican population. Clin Genet. 2007;72(6):574–81.
- 28. Ongphiphadhanakul B, Chanprasertyothin S, Payattikul P, Saetung S, Rajatanavin R. The implication of assessing a polymorphism in estrogen receptor alpha gene in the risk assessment of osteoporosis using a screening tool for osteoporosis in Asians. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2003;14(10):863–7.
- 29. Ongphiphadhanakul B, Chanprasertyothin S, Payattikul P, Saetung S, Piaseu N, Chailurkit L, Rajatanavin R. Association of a G2014A transition in exon 8 of the estrogen receptor-alpha gene with postmenopausal osteoporosis. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2001;12(12):1015–9.
- Shoukry A, Shalaby SM, Etewa RL, Ahmed HS, Abdelrahman HM. Association of estrogen receptor beta and estrogen-related receptor alpha gene polymorphisms with bone mineral density in postmenopausal women. Mol Cell Biochem. 2015;405(1–2):23–31.
- Huang HL, Tan HH, Chen BP, Li H, Xie JS, Zhao QZ. Correlation of polymorphism of estrogen receptor-β and camellia oil with postmenopausal osteoporosis in Zhuang women of Guangxi. Chinese Journal of Anatomy. 2015;03:323–325,343.
- Moron FJ, Mendoza N, Vazquez F, Molero E, Quereda F, Salinas A, Fontes J, Martinez-Astorquiza T, Sanchez-Borrego R, Ruiz A. Multilocus analysis of estrogen-related genes in Spanish postmenopausal women suggests an interactive role of ESR1, ESR2 and NRIP1 genes in the pathogenesis of osteoporosis. Bone. 2006;39(1):213–21.

- Albagha OM, FE MG, Reid DM, Ralston SH. Estrogen receptor alpha gene polymorphisms and bone mineral density: haplotype analysis in women from the United Kingdom. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2001; 16(1):128–34.
- Kurt O, Yilmaz-Aydogan H, Uyar M, Isbir T, Seyhan MF, Can A. Evaluation of ERalpha and VDR gene polymorphisms in relation to bone mineral density in Turkish postmenopausal women. Mol Biol Rep. 2012;39(6):6723–30.
- Kurabayashi T, Tomita M, Matsushita H, Yahata T, Honda A, Takakuwa K, Tanaka K. Association of vitamin D and estrogen receptor gene polymorphism with the effect of hormone replacement therapy on bone mineral density in Japanese women. Am J Obstet Gynecol. 1999;180(5): 1115–20.
- Ge JR, Zhu XX, Chen K. Effect of estrogen receptor gene Px haplotype on bone mineral density in female postmenopausal osteoporosis. Chin J Geriatr. 2006;25(6):416–9.
- Ge JR, Wang HM, Zhu XX, Chen K. Effect of Pvullpolymorphisms of estrogen receptor gene on filtering risk factors in postmenopansal osteoporosis. Chin J Osteoporos. 2006;12(1):38–40.
- An SJ, Li E, Tong XX, Liu K, Zhao JS. Study on relationship between estrogen receptor gene polymorphism and syndrome differentiation typing of female postmenopausal osteoporosis in traditional Chinese medicine. Chinese Journal of Integrated Traditional and Western Medicine. 2000; 20(12):907–10.
- Wang KJ, Shi DQ, Sun LS, Jiang X, Lu YY, Dai J, Chen DY, Xu ZH, Jiang Q. Association of estrogen receptor alpha gene polymorphisms with bone mineral density: a meta-analysis. Chin Med J. 2012;125(14):2589–97.
- 40. Wang CL, Tang XY, Chen WQ, Su YX, Zhang CX, Chen YM. Association of estrogen receptor alpha gene polymorphisms with bone mineral density in Chinese women: a meta-analysis. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2007; 18(3):295–305.
- 41. Ioannidis JP, Stavrou I, Trikalinos TA, Zois C, Brandi ML, Gennari L, Albagha O, Ralston SH, Tsatsoulis A. Association of polymorphisms of the estrogen receptor alpha gene with bone mineral density and fracture risk in women: a meta-analysis. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2002;17(11):2048–60.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit

