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Insulin treatment corrects hepcidin but not
YKL-40 levels in persons with type 2
diabetes mellitus matched by body mass
index, waist-to-height ratio, C-reactive
protein and Creatinine
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Abstract

Background: It has been shown that hepcidin and YKL-40 levels change in persons with insulin resistance in different
circumstances. However, variations of the levels of these parameters through the stages of prediabetes and type
2 diabetes mellitus are unclear. We hypothesized that hepcidin levels will decrease in persons with prediabetes,
while these levels will tend to correct when persons with diabetes are treated with insulin. Finally we sought to
determine the levels of YKL-40 in all groups of participants included in the study.

Methods: Serum hepcidin levels and YKL-40 levels were measured in control group (n = 20), persons with prediabetes
(n = 30) and persons with diabetes on insulin therapy (n = 30) using ELISA method. Patients in all three groups were
matched by Body Mass Index, Waist-to-Height Ratio, C-Reactive Protein and creatinine levels.

Results: Hepcidin levels were lower in persons with prediabetes compared to control, while persons with diabetes on
insulin therapy had higher values than those with prediabetes (p = 0,00001). YKL-40 levels showed no significant changes.

Conclusions: Serum hepcidin levels in matched persons with prediabetes are a stronger marker of early changes in
glucose metabolism compared to YKL-40 levels. Also, treatment with insulin corrects hepcidin levels, but not YKL-40
levels. Correcting levels of hepcidin is important for reducing iron-overload, which is a risk factor for diabetes.
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Background
Since its discovery as a major regulator of iron metabo-
lism, hepcidin has become a focal point of studies
through which scientists are trying to understand the
role of this protein in different circumstances and path-
ologies. Hepcidin is a protein composed of 25 aminoa-
cids produced in hepatocytes, but also in macrophages,
adipocytes, tubular cells of the kidneys [1]. After being
secreted into plasma, hepcidin binds to ferroportin

(FPN) in different cells, such as enterocytes and macro-
phages [2]. The binding of hepcidin to FPN induces
degradation of FPN in lysosomes, thus reducing its ex-
pression in the membrane of enterocytes and macro-
phages [2, 3]. Since FPN is the main exporter of iron out
of cells, this action will sequester iron into cells and pre-
vent iron release from enterocytes and macrophages. In
this way high levels of hepcidin will reduce iron trans-
port from cells into plasma and vice-versa [4].
Hepcidin is affected by many different factors through

complex biochemical relationships. Factors that suppress
hepcidin expression include: low tissue oxygen, eryth-
ropoietin, erythroferrone, vitamin D [5, 6]. On the other
hand, it has been shown that iron-load, inflammation,
chronic renal failure, infection upregulate hepcidin
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expression [7]. Hepcidin has also been studied in con-
ditions marked with insulin resistance (IR), like dia-
betes mellitus type 2 (DM type 2). Hepcidin levels
were shown to be increased in persons with features
of metabolic syndrome [8], but also in persons with
DM type 2 with high ferritin and interleukin 6 (IL6)
levels [9]. In persons with DM type 2 and persons
with polycystic ovary syndrome matched by weight,
hepcidin and hepcidin to ferritin ratio levels are
decreased [10]. More importantly, this study showed
that deficient levels of hepcidin were related to pa-
rameters of IR. Interestingly, deficient hepcidin pro-
duction was not observed in DM type 1, which
implies that IR rather than insulin deficiency is the patho-
physiological process behind hepcidin disturbance. Fur-
thermore, in studies with streptozotocin-induced diabetes
in rats, disturbance of insulin signaling was associated
with low levels of hepcidin, whereas insulin treatment
reversed these changes [11]. This is an important observa-
tion since iron-load is a risk factor for diabetes, while the
use of phlebotomy and iron-chelation were shown to
reduce this risk [12]. Considering the impracticality of
regular phlebotomies and poor compliance observed
with chelation therapy [13], better options are needed
to reduce iron-load and consequent risk of diabetes.
Recently, other biochemical parameters have been

studied in states characterized with IR. YKL-40 is one
of the most interesting targets in this respect. This
protein which is also known as human cartilage
glycoprotein-39, is expressed in macrophages, neutro-
phils, chondrocytes, synoviocytes, vascular smooth
cells, malignant cells [14]. Studies have shown that
YKL-40 is upregulated in conditions characterized
with chronic inflammation like osteoarthritis [15],
rheumatoid arthritis [16], liver fibrosis [17]. YKL-40 is
also upregulated in acute infections [18] (probably
through mechanisms including IL6), and cancer [19].
Role of YKL-40 has been studied in diabetes melli-

tus as well. Levels of YKL-40 are higher in DM type
2 patients compared to non-diabetic patients [14].
This association is independent of obesity, but is re-
lated to parameters of IR and IL6, which is a marker
of inflammation. It has to be mentioned that other
studies have shown that obesity is related to YKL-40
levels in prebupertal children and in non-diabetic rel-
atives of DM type 2 patients [20, 21]. It could be that
the discrepancies concerning the links between obes-
ity and YKL-40 are related to the presence or lack of
glucose metabolism disturbances in these patients
[14]. Another contradiction arises from observations
seen in non-diabetic relatives of diabetic patients. In
these persons, YKL-40 is not related to markers of
IR, but is related to low levels of inflammation caused
by obesity [21]. Role of YKL-40 as a marker of low

grade inflammation, independent of diabetes presence,
has been observed in the elderly population as well
[22]. Also, studies suggest that YKL-40 cannot be
used as a predictive biomarker in early gestational
diabetes [23], casting a doubt on its role in the emer-
gence of diabetes mellitus.
More consistently YKL-40 levels are upregulated in

complications of DM type 2, such as albuminuria [24]
and peripheral artery disease [25]. In morbidly obese
persons, YKL-40 levels are in correlation with mono-
cyte chemoattractant protein 1 (MCP1) [26]. MCP1 is
a chemokine involved in recruitment of different leu-
kocytes during inflammation [27]. It is interesting to
note that YKL-40 is produced through local activation
of specific cells, which means that eliminating local
factors that induce YKL-40 upregulation can poten-
tially control the rise in YKL-40 levels. As we can see
studies have unveiled a complex role of YKL-40 in
DM type 2, which has not been elucidated com-
pletely, and which is accompanied with contradictory
observations that need to be clarified.
In order to further understand the role of hepcidin

and YKL-40 in DM type 2, we sought to investigate
how do hepcidin and YKL-40 levels change when pa-
tients are matched by Body Mass Index (BMI), Waist
to Height Ratio (WtHR), C Reactive Protein (CRP)
and creatinine levels. Also, we wanted to explore if
these changes happen in the prediabetic stage. Finally,
we wanted to examine how does insulin treatment af-
fects hepcidin and YKL-40 levels in persons with DM
type 2.

Methods
Participants
In total, we examined 80 persons, 20 were included
in the control group (13 men and 7 women), 30 were
included in the the group with prediabetes (19 men
and 11 women), and 30 were in the group with DM
type 2 on insulin therapy (18 men and 12 women).
Patients were enlisted from Ohrid Regional Hospital
and came from different parts of Macedonia. Partici-
pants in the group with prediabetes and DM type 2
were diagnosed according to American Diabetes
Association-ADA criteria [28]. Inclusion criteria were
age > 18, overweight status, no significant changes in
CRP and creatinine levels. Exclusion criteria included
participants with documented hemochromatosis, per-
sons on erythropoietin therapy, persons on iron ther-
apy and persons with renal disease. All the
participants were initially informed about the purpose
of the study and were included only after willingly
signing the letter of consent. The work was approved
by the institutional committee for evaluation of ethics
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of the study (approval number:1278, reference num-
ber:3424) in respect of principles of the Declaration
of Helsinki.

Methods
Blood samples were taken after overnight fasting
using two types of containers, one of which contained
ethylenediamine tetra-acetic acid, while the other did
not contain any anticoagulant. Plasma was frozen and
stored at −80 °C until assayed. Complete blood count
and hemoglobin were analysed by automatic cell
counter (ERMA 750 Hematology Analyzer, Erma Inc.,
Japan), whereas serum samples were analysed by
automatic biochemical analyzer (Miura Biochemical
Analyzer, I.S.E. SRL, Italy). Serum ferritin, hepcidin
and YKL-40 were measured by ELISA method with
ELISA kits used according to manufacturers instruc-
tions (Elabscience Biotechnology Co. Ltd). The kits
contain micro ELISA plates precoated with specific
antibodies. Serum samples were added to ELISA plate
wells. The minimum detectable dose of human fer-
ritin was 9.375 ng/ml, with a detection range of
15.625-1000 ng/ml and coefficient of variation < 10%.
For hepcidin the minimum detectable dose was
0.094 ng/ml, with a detection range of 0.156-10 ng/
ml and coefficient of variation < 10%. For YKL-40 the
minimum detectable dose was 37.5 pg/ml with a de-
tection range of 62.5-4000 pg/ml and coefficient of
variation < 10%.

Statistical analysis
Statistical analysis was done using SPSS 21, IBM soft-
ware. Analysis between groups for mean comparisons
was done using One Way ANOVA, after initially

testing for distribution of normality using Kolomogorov-
Smirnov and Shapiro-Wilk test. Skewed data were trans-
formed using log10. When the distribution of data did
not meet the criteria for parametric tests, we used
the Kruskal Wallis test. Correlation was done using
Spearman test. Results are presented as mean ± SD,
median (interquartile range) and geometric mean with
95% confidence intervals (CIs). In all cases, p < 0,05
was considered statistically significant.

Results
Median age was 48 (39-58.25) for the control group,
53.5 (37.5-59.25) for prediabetic patients and 59,5
(53.75-70.25) for diabetic patients. Hepcidin levels
differed significantly between all groups (p = 0,00001).
Post-hoc analysis showed significant differences
between control and prediabetic patients (p < 0.05)
but also between prediabetic and diabetic patients on
insulin therapy (p < 0.05) (Fig. 1). Systolic blood pres-
sure (SBP) values showed significant differences
between all groups (p < 0.0001). Post-hoc analysis re-
vealed nearly significant differences between control
and prediabetic patients (p = 0.055) while the differ-
ence between prediabetic patients and diabetic pa-
tients on insulin was statistically significant (p < 0.05)
(Fig. 2). Diastolic blood pressure (DBP) showed sig-
nificant differences between all groups (p < 0.0001).
Post-hoc analysis revealed significant differences be-
tween control and prediabetic patients, but also be-
tween prediabetic patients and diabetic patients on
insulin therapy (p < 0.05) (Fig. 3). YKL-40 levels did
not differ significantly between groups (p = 0.294).
Heart rate (HR) also differed significantly between all

Fig. 1 Hepcidin levels in control, prediabetic patients and diabetic patients dependent on insulin. There is a statistical difference between all groups.
Levels of hepcidin go down in prediabetes, but recuperate in insulin dependent DM type 2. *Statistical analysis done using One-Way ANOVA.
**Post-hoc analysis of differences between specific groups. Abbreviations. ID DMT2, insulin dependent diabetes mellitus type 2
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groups (p < 0.0001), which was confirmed by post-hoc
analysis between control and prediabetic patients, but also
between prediabetic patients and diabetic patients on in-
sulin therapy (Fig. 4). Summarized clinical, biochemical
and anthropometrical data are presented in Table 1.
Hepcidin levels in all groups did not correlate with

ferritin (Fig. 5), glucose (Fig. 6), glycated hemoglobin

(HbA1C) (Fig. 7) and iron levels (Fig. 8). Although
hepcidin was positively correlated with glucose in per-
sons with prediabetes, this was not significant (p =
0.064). Summary of the most important correlation
coefficients are presented in Table 2.

Discussion
Studies in humans and rats have shown that IR affects
hepcidin levels [10, 29]. In our study, levels of hepcidin
were lower in persons with prediabetes compared to
controls, when matched for BMI, WtHR, creatinine and
CRP values. Other studies have shown similar changes
in persons with diabetes when matched for BMI and
CRP levels [10]. However, our study, for the first time
to our knowledge, revealed that changes in hepcidin
levels start to happen earlier, that is, in the prediabetic
stage. Prediabetes is a risk factor for diabetes and it is a
known condition associated with IR. Also, studies that
have shown increased levels of hepcidin in diabetes did
not have persons matched for factors that influence
hepcidin production. In these studies persons with dia-
betes either had high BMI [30], renal disease [31], or
different features of metabolic syndrome compared to
controls. Since inflammation upregulates hepcidin
expression, our participants were also matched by in-
flammatory status by not having significant changes in
CRP values. Our results from patients with prediabetes
are in terms with studies that confirm the predictive
value of hepcidin in incident DM type 2; lower levels of
hepcidin are predictors of incident DM type 2, while
higher levels of hepcidin are related with a decreased
risk for DM type 2 [32].

Fig. 2 Systolic blood pressure levels in control, prediabetic patients and diabetic patients dependent on insulin. Statistical differences between all
groups are significant. Median systolic blood pressure levels rise nearly significantly in prediabetes compared to control. The rise in median systolic
blood pressure is significant in diabetic patients compared to prediabetic patients. *Statistical analysis done using One-Way ANOVA. **Post-hoc analysis
of differences between specific groups. Abbreviations. ID DMT2, insulin dependent diabetes mellitus type 2

Fig. 3 Diastolic blood pressure levels in control, prediabetic patients
and diabetic patients dependent on insulin. There is a statistically
significant difference between all groups. Median levels of diastolic
blood pressure rise in prediabetes compared to control and diabetes
compared to prediabetes. *Statistical analysis done using One-Way
ANOVA. **Post-hoc analysis of differences between specific groups.
Abbreviations. ID DMT2, insulin dependent diabetes mellitus type 2
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In addition, the present study, for the first time to
our knowledge, shows that persons with diabetes on
insulin therapy have higher values of hepcidin, con-
firming similar results obtained from studies on rats
[11]. Different studies have shown that hepcidin levels

in DM type 2 are low [10, 33]. Since insulin therapy
in models of rats does recuperate hepcidin expression
we believe that this is the case with our patients as
well. By restoring hepcidin levels we can control iron-
load in cells and potentially prevent DM type 2 [34].

Fig. 4 Heart rate levels in control, prediabetic patients and diabetic patients dependent on insulin. Heart rate increase in all groups is statistically
significant. Specific between group analysis reveals increase in median levels in prediabetes compared to control, but this is not significant. On
the other hand, median levels rise in diabetes compared to prediabetes with statistical significance. *Statistical analysis done using One-Way ANOVA.
**Post-hoc analysis of differences between specific groups. Abbreviations. ID DMT2, insulin dependent diabetes mellitus type 2

Table 1 Clinical, anthropometrical and biochemical data by groups

Parameters Control group
(n = 20)

Persons with prediabetes
(n = 30)

Persons with type 2 diabetes on
insulin therapy (n = 30)

BMI (kg/m2) 27.9 ± 3.4 27.4 ± 4.5 27.2 ± 2.5

WHtR 0.59 ± 0.08 0.59 ± 0.11 0.59 ± 0.10

CRP (mg/l) 0.0(0.0-0.0) 0.0(0.0-0.0) 0.0(0.0-0.25)

Creatinine (μmol/l) 76.3 ± 5.1 80.9 ± 11.7 80.8 ± 8.5

Urea (mmol/l) 5.2(4.3-6.3) 4.7(4.0-5.9) 5.1(4.3-6.0)

Glucose (mmol/l) 4.9 ± 0.4 6.0 ± 0.4 9.5 ± 2.6

HbA1C (%) 4.1 ± 0.5 6.2 ± 0.1 9.1 ± 2.1

Serum iron (μmol/l) 16.6 ± 5.4 19.4 ± 5.9 18 ± 6.1

TIBC (μmol/l) 49.3 ± 4.6 51.0 ± 7.6 51 ± 7.1

UIBC (μmol/l) 32.7 ± 3.0 31.7 ± 3.1 33.0 ± 2.4

TS (%) 33.1 ± 8.8 37.2 ± 6.8 34.4 ± 8.4

Hgb (g/dl) 14.2 ± 1.4 14.4 ± 1.5 13.9 ± 1.4

Hepcidin (ng/ml) 46.3 ± 11.8 28.6 ± 10.8 41.8 ± 11.9

Ferritin (ng/ml) 130.5(39.9-156.7) 152.5(104.1-162.4) 143.9(91.1-155.8)

YKL-40 (ng/ml) 75.1(55.5-146.1) 70.8(43.8-127.0) 58.4(44.3-82.2)

HR (bpm) 65.5(65-68) 70.5(64-74.5) 78(74-84)

SBP (mmHg) 120(120-130) 130(120-135) 140(130-150)

DBP (mmHg) 80(80-84) 90(80-91) 100(90-111)

BMI body mass index, WHtR waist to height ratio, CRP-C reactive protein, HbA1C glycated hemoglobin, TIBC total iron binding capacity, UIBC unsaturated iron
binding capacity, T transferrin saturation, Hgb hemoglobin, HR heart rate, SBP systolic blood pressure, DBP diastolic blood pressure. Results are expressed as mean
± SD and median (Q1-Q3). Variables with significant differences between groups are shown in bold (p < 0.05)
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But maintaining adequate hepcidin levels can be
beneficial for patients with overt DM type 2 as well.
The reason for this is that complications of diabetes
can be prevented by reducing iron-load [34].
We can speculate as to why hepcidin levels go

down in prediabetes. It could be that some sort of a
feedback loop is activated in such a way that supra-
normal levels of insulin cause compensatory downreg-
ulation of hepcidin (as it happens in prediabetes),
while in states with subnormal levels of hepcidin (like
full blown diabetes) treatment with insulin restores
insulin signaling and corrects hepcidin levels. Another
theory could be that changes in hepcidin levels might
occur as a result of disturbances in secretion of hep-
cidin by beta cells of pancreas. We know that hepci-
din is expressed in beta cells of pancreas, and more
importantly in secretory granules containing insulin
[35]. Since many products of endocrine pancreatic
cells pass into plasma, it may be that, serum hepcidin
can be affected in states characterized with glucose
metabolism impairment. Future experimental studies
should clarify the role of liver and local pancreatic se-
cretion of hepcidin in the patophysiology of diabetes.
The results of this study showed that when eliminating

factors that influence the production of YKL-40, serum

levels of this protein do not change significantly in per-
sons with prediabetes and diabetes. Studies examining
YKL-40 levels in diabetes and prediabetes have shown
that the rise in serum levels of YKL-40 is an indirect re-
sponse to local inflammatory status, morbid obesity,
renal dysfunction [24–26]. Our study is the first one to
study changes in serum YKL-40 levels when corrected
for known upregulating factors. Since YKL-40 levels did
not change in our setting, we can say that the role of
YKL-40 in the patophysiology of diabetes is more sec-
ondary compared to hepcidin disturbance.
Additionally, our results have also shown that pa-

tients with prediabetes and DM type 2 have signs of
autonomic dysfunction. This was confirmed by signifi-
cant increase in median values for HR, SBP and DBP
across the groups. This is in line with previous re-
ports concerning similar changes observed in diabetic
patients [36, 37].

Conclusions
According to results of our study, we conclude that
prediabetes is connected with low values of hepcidin
when patients are matched for other factors, whereas
treatment with insulin corrects hepcidin values in

Fig. 5 Correlations between hepcidin and ferritin in prediabetic patients
and diabetic patients dependent on insulin. Spearman correlation
revealed no significant correlation between hepcidin and ferritin in (a)
prediabetes and (b) diabetes

Fig. 6 Correlations between hepcidin and glucose in prediabetic
patients and diabetic patients dependent on insulin. Spearman
correlation revealed no significant correlation between hepcidin
and glucose in (a) prediabetes and (b) diabetes
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persons with diabetes. Our diabetic patients had uncon-
trolled diabetes, which was confirmed by high levels of
mean glucose and HbA1C. This would preclude meta-
bolic regulation as the “culprit” behind increased levels
of hepcidin in diabetic patients. This study shows that
insulin therapy can have beneficial effects outside its
classical actions on glucose metabolism. The new para-
digm connects insulin therapy with the potential to cor-
rect frequently observed changes of iron metabolism in
diabetes [34]. This action of insulin is attributed to its

effects in restoring hepcidin levels. Yet, we still do not
know what is the role of insulin dosage, patient compli-
ance and duration of insulin therapy in relation to hep-
cidin levels. Also, long-term measurements of hepcidin
levels should be evaluated to better understand the role
of hepcidin fluctuations in DM type 2. Future studies
should resolve these important questions.

a

b

Fig. 8 Correlations between hepcidin and serum iron in prediabetic
patients and diabetic patients dependent on insulin. Spearman
correlation revealed no significant correlation between hepcidin and
serum iron in (a) prediabetes and (b) diabetes

Table 2 Selected Spearman correlations between variables in all three groups

Correlations Control group (n = 20) Persons with prediabetes (n = 30) Persons with type 2 diabetes on
insulin therapy (n = 30)

YKL-40/age r = 0.243, p = 0.302 r = −0.073, p = 0.703 r = 0.046, p = 0.809

Hepcidin/Glucose r = 0.150, p = 0.528 r = 0.342, p = 0.064 r = −0.227, p = 0.228

Hepcidin/HbA1C r = −0.154, p = 0.517 r = 0.210, p = 0.266 r = 0.112, p = 0.556

Hepcidin/Ferritin r = −0.081, p = 0.734 r = 0.082, p = 0.666 r = 0.132, p = 0.486

Hepcidin/YKL-40 r = 0.188, p = 0.427 r = −0.034, p = 0.858 r = −0.358, p = 0.052

Ferritin/YKL-40 r = −0.173, p = 0.466 r = −0.135, p = 0.476 r = −0.009, p = 0.964

BMI/WHtR r = 0.460, p = 0.041 r = 0.828, p < 0.001 r = 0.459, p = 0.011

HR/SBP r = 0.800, p < 0.001 r = 0.767, p < 0.001 r = 0.630, p < 0.001

HR/DBP r = 0.531, p = 0.016 r = 0.873, p < 0.001 r = 0.657, p < 0.001

Significant correlations are shown in bold (p < 0.05)

a

b

Fig. 7 Correlations between hepcidin and HbA1C in prediabetic
patients and diabetic patients dependent on insulin. Spearman
correlation revealed no significant correlation between hepcidin and
HbA1C in (a) prediabetes and (b) diabetes
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