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Abstract

Background: α-amidation is a final, essential step in the biosynthesis of about half of all peptide hormones and
neurotransmitters. Peptidylglycine α-amidating monooxygenase (PAM), with enzymatic domains that utilize Cu and
Zn, is the only enzyme that catalyzes this reaction. PAM activity is detected in serum, but its significance and utility
as a clinical biomarker remain unexplored.

Methods: We used well-established enzymatic assays specific for the peptidylglycine-α -hydroxylating
monooxygenase (PHM) and peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domains of PAM to quantify
amidating activity in the sera of 144 elderly men. Relationships between PHM and PAL activity and serum levels of
their respective active-site metals, Cu and Zn, were analyzed. Study participants were also genotyped for eight
non-coding single nucleotide polymorphisms (SNPs) in PAM, and relationships between genotype and serum
enzyme activity and metal levels were analyzed.

Results: Serum PHM and PAL activities were normally distributed and correlated linearly with each other. Serum
PAL activity, but not serum PHM activity, correlated with serum Cu; neither activity correlated with serum Zn. Study
subjects possessing the minor alleles for rs32680 had lower PHM and PAL activities, and subjects with minor alleles
for rs11952361 and rs10515341 had lower PHM activities.

Conclusions: Our results characterize large variation in serum amidating activity and provide unique insight into its
potential origin and determinants. Common non-coding polymorphisms affect serum amidating activity and Cu
levels. Serum amidating activity should be explored as a biomarker for functionality in the elderly and in additional
study groups.
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Background
Peptides are ancient signaling molecules, with roles in
plants and animals. Despite their diversity, many se-
creted peptides share a common biosynthetic pathway.
Carboxy-terminal α-amidation is a final and essential
step in the synthesis of about half of bioactive peptides
in humans [1,2]. While the list of biologically active
peptide products continues to grow, our understanding
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of the complex network of peptidergic signaling pathways
and their clinical relevance remains modest.
Peptidylglycine α-amidating monooxygenase (PAM), an

integral membrane protein, is the only enzyme known to
catalyze the α-amidation reaction [3,4]. The first part of this
two-step reaction, the α-hydroxylation of peptidylglycine,
is accomplished by the peptidylglycine α-hydroxylating
monooxygenase (PHM: EC1.14.17.3) domain of PAM,
which requires Cu [5,6]. The second step, C-N bond
cleavage to yield the final amidated product plus glyoxylate,
is accomplished by peptidyl-α-hydroxyglycine α-amidating
lyase (PAL:4.3.2.5), which uses Zn, although several other
divalent metals can substitute for Zn. Tissue-specific
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endoproteolytic cleavage of PAM can produce soluble
PHM and PAL, which can be secreted and remain active
outside the cell [7,8]. PHM and PAL activity is present
in mammalian serum, although the tissue source re-
mains unknown.
The human PAM gene contains 25 exons extending

over 160 kb at chromosome 5q21.1. Alternative spli-
cing generates at least 5 isoforms [9]. The gene interval
shows a low level of recombination and is contained in
a single large haplotype block. Little is known about
the regulation of PAM expression in humans or about
potential functional genetic variations in the PAM gene.
There are nearly 100 annotated coding variants in the
human PAM gene and their functional consequences
have yet to be tested (http://www.ncbi.nlm.nih.gov/SNP/
snp_ref.cgi?locusId=5066).
Animal models suggest that one mechanism of regu-

lating PAM expression involves changes in its mRNA
stability. In rat models, estrogen down-regulates PAM
mRNA in the anterior pituitary via a change in nuclear
stability [10]. This effect may be related to changes in
the La protein, which binds to a nuclear retention do-
main in the 3′-untranslated region of PAM mRNA [11].
With regard to this potential regulation by the La pro-
tein, we note that the 3′UTR of human PAM contains a
SNP, rs5855 (A/G, G is the minor, but ancestral, allele),
positioned 60 bp upstream of the La protein nuclear
retention binding site. The A-allele generates a poly-
adenylation consensus sequence (AAUAAA), which is
predicted to generate PAM mRNA variants lacking the
La protein nuclear retention signal.
Genetic ablation of the gene encoding Pam results in

embryonic lethality in mice and complete absence of
amidating activity [4]. Pam heterozygosity (Pam+/-) re-
sults in temperature dysregulation, impairments in
vasoconstriction, increased susceptibility to seizures,
an anxiety-like phenotype, learning and memory defi-
cits and neuronal hyperexcitability in limbic brain
structures [12-14]. Interestingly, many of these deficits
can be recapitulated in normal mice by mild dietary
Cu restriction and are reversed in Pam+/- mice by diet-
ary Cu supplementation. These observations suggest
the presence of a complex, bi-directional relationship
between Cu availability and Pam expression in mice
[15,16] (for review see [17]).
Serum PHM and PAL activity have not been studied

in a large human cohort. In this study, we investigate the
relationship between serum PHM and PAL activities and
serum metal levels in a previously characterized popula-
tion of elderly men with frailty characteristics [18,19].
We genotyped these men for single nucleotide polymor-
phisms (SNPs) in non-coding regions of the PAM gene
and analyzed the relationship of PAM genotype with
enzyme activities and Cu levels.
Methods
Study population
Frail men aged 60 years or older, residing in the community
or assisted living, were recruited to participate in the study.
The individuals were screened for potential participation in
a previously reported study to assess testosterone effects on
bone and frailty in men [18] and the relationship between
serum Cu and the Cu/Zn ratio with measures of independ-
ence and frailty [19]. The data used in this analysis are base-
line assessments. All study participants provided written
informed consent. Analysis was limited to men due to the
hypothesis and design of the original study on testos-
terone; a similar female cohort was not available for
study. The Institutional Review Board at the University
of Connecticut Health Center approved the study.
Our sample was of moderate size for the detection of

genotype/phenotype correlations. A sample of 120 men
with markers having minor allele frequencies of 0.16-0.44
has 80% power to detect large effects (d > 0.7) for the
minor allele in recessive genetic models and 80% power to
detect medium effects (d = 0.5) using dominant minor allele
genetic models. The effect sizes relative to PHM enzyme
activity observed for markers rs32680, rs11952361 and
rs10515341 under the recessive model were 0.94, 0.57
and 0.84. For marker rs10038600, the observed effect
size was 0.38 for the dominant minor allele model.
Analysis of larger samples will be important to verify
the genotype-phenotype associations observed.

Biochemical analysis
PHM activity was assayed as described using a trace
amount of [125I]-Ac-Tyr-Val-Gly, 0.5 μM Ac-Tyr-Val-Gly
and 4.0 μM CuSO4; serum samples were diluted 10-fold
into 20 mM Na TES, pH 7.4, 10 mM mannitol, 1 mg/ml
bovine serum albumin, 1% TX-100 (Surfact-Amps X-100)
(Thermo Scientific) and 4 μl of the dilution (0.4 μl of serum)
was assayed in triplicate in 100 mM Na MES, pH 5.5 [13].
In the absence of exogenous Cu, PHM activity cannot
be detected in human serum; based on dose-response
curves (data not shown), the addition of exogenous Cu
(4.0 μM CuSO4) yielded maximal levels of PHM activity
for serum samples in both the upper and lower quintiles.
PAL activity was assayed in triplicate from the same
dilutions (0.2 μl of serum) using a trace amount of
[125I]-Ac-Tyr-Val-α-hydroxyglycine, 0.5 μM Ac-Tyr-
Val-μ-hydroxyglycine, 1 mM CdCl2, 0.02% Thesit and
100 mM Na MES, pH 5.5 [20]. Ceruloplasmin was assayed
in duplicate using o-dianisidine dihydrochloride [21,22]; a
linear response was observed with 1.0 to 5.0 μl serum and
samples were compared using 2.5 μl serum.
As reported previously [19], inductively coupled plasma

mass spectrometry analysis of Cu and Zn were performed
using an Agilent 7700x equipped with an ASX 500 auto-
sampler at a radio frequency power of 1550 W, argon
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plasma gas flow rate of 15 L/min, and argon carrier gas
flow rate of 1.04 L/min. Cu and Zn were measured in
kinetic energy discrimination mode using He gas
(4.3 mL/min). For analysis, serum samples were diluted
25-fold into 1% HNO3 (Fisher Scientific). Data were
quantified using a 5-point [0-1000 ppb (ng/g)] calibra-
tion curve with external standards. For each sample,
data were acquired in triplicate and averaged. An in-
ternal standard (Er) introduced with the sample was
used to monitor for plasma instabilities and correct for
changes in sample matrix.

Genotyping
Selection of markers: There are no validated common
(>5%) coding variants in the PAM gene. The potentially
functional rs5855 SNP upstream of the PAM mRNA La
protein nuclear retention binding site was identified using
in silico inspection of 3′UTR SNPs. Amplification of the
3′-region of PAM mRNA via cDNA copies from human fi-
broblasts indicated that the A-allele yielded truncated iso-
forms of PAM mRNA (Jensen and Covault, unpublished).
The 3′UTR rs5855 SNP together with 7 TagSNPs identified
using the 2008 HapMap CEU population dataset were
genotyped using closed-tube fluorescent TaqMan 5′-
nuclease allelic discrimination assays. DNA was extracted
from peripheral blood samples using a commercial kit
(Gentra Puregene, Qiagen, Valencia, CA). Commercial
TaqMan assays were used for six markers: rs32680,
rs10038600, rs7733485, rs11952361, rs10515341, and
rs17296280 [Applied Biosystems Inc. (ABI) Foster City, CA].
Primers and MGB probes were designed using Primer
Express v3.0 software (ABI) for 2 SNPs rs249496
(primers: TGGCGCTGGGGCTAGAC and ATGATG
ACTGACGCGGGTTT; MBG probes: 6-fam-TGCCT
TATGACTCCGGA and vic-TGCCTTATCACTCCGGA)
and rs5855 (primers: TGCCTTTCCTGTTCAGCATTC
and TGTCGTCATGTAGCACAAAGTTTCT; MBG
probes: 6-fam-CCTGTGGCAGTAAA and vic-CTGT
GGCAATAAA). Fluorescence plate reads and genotype
calls were made using a 7500 Sequence Detection System
following PCR amplification for 40 cycles at 95°C for
15 seconds followed by 60°C for 60 seconds. Linkage
disequilibrium for the eight SNP markers in this sample
of 140 Caucasian men was examined using the software
program Haploview v3.2.2 [23].

Statistical analysis
All variables were checked for normal distribution and
the impact of outliers. Normality was tested using simple
sample Chi Squared or Kolmogorov-Smirnov tests.
Correlation coefficients were used to detect prelimin-
ary associations of PHM and PAL activities with serum
metals with other measures of interest. Dominant and
recessive effects of the minor allele for each SNP were
examined using independent groups t-tests comparing
either major allele homozygotes with minor allele carriers
with major allele homozygotes (dominant minor allele
effect model) or minor allele homozygotes vs. major allele
carriers (recessive minor allele effect model). Levene’s
test was used to guide equal variance assumptions in
each comparison. Statistical analyses were performed
using SPSS version 22.0.

Results
Subject population
One hundred and forty-four community dwelling elderly
men were included in this analysis. Baseline information
for this sample has been reported previously [19]; their
mean age was 77.1 ± 7.6 years and their mean BMI was
26.9 ± 4.4 kg/m2. Most men (91%) met the criteria for
frailty (18%) or prefrailty (72%). Approximately 50% met
criteria for sarcopenia or low muscle mass commonly
associated with aging [24]. A complete set of enzyme
activity, serum metal measures and genotype information
were available for 120 subjects.

Serum amidating activity
Assays were performed after adding exogenous metals
and reflect the amount of PHM and PAL protein, not
metallation of each enzyme, in serum [13]. Average serum
enzyme activity was 5.51 ± 1.11 nmol/mL/h for PHM and
19.1 ± 4.5 nmol/mL/h for PAL (Table 1). Serum PHM and
PAL activities, and the PHM/PAL ratio were normally dis-
tributed (Figure 1A,B,C). PHM and PAL activities were
significantly correlated (p < 0.05) (Figure 1D), as would be
expected for enzymes cleaved from the same bifunctional
precursor. The average ratio of PHM to PAL activity in
serum was 0.30 ± 0.01 (Table 1). Assayed under similar con-
ditions, with the peptide substrate concentration well below
KM, purified bifunctional PAM-3 yielded a PHM/PAL activ-
ity ratio of 0.2 when intact and 0.6 to 0.8 after proteolytic
cleavage [25]. Consistent with these observations, when
assayed under similar conditions, purified PHM was
several fold less active than purified PAL [20].

Relationship with serum metals
Since PHM and PAL utilize Cu and Zn for their enzymatic
activities and are co-released from secretory vesicles, we in-
vestigated the relationship between PHM or PAL activity
and serum Cu and Zn levels. Pearson correlation analyses
revealed a significant linear relationship between serum
Cu and PAL activity, but not PHM activity (p < 0.05)
(Figure 2A,B). Serum Cu and ceruloplasmin activity cor-
related strongly and directly, as expected (Figure 2C).
Serum Zn did not correlate with PHM, PAL or ceruloplas-
min activity (data not shown).
In our previous study of this same cohort [19], we found

significant relationships between the serum Cu/Zn ratio



Table 1 Serum amidating activity: descriptive statistics

Enzyme Mean Standard
error

Standard
deviation

Variance Skewedness Kurtosis

PHM 5.51 0.10 1.11 1.24 0.24 ± 0.22 0.71 ± 0.43

PAL 19.1 0.4 4.5 20.3 -0.08 ± 0.22 0.14 ± 0.43

PHM/PAL 0.30 0.01 0.78 0.01 0.92 ± 0.22 1.34 ± 0.43
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with various measures of health. Similar to the data for
serum Cu, the Cu/Zn ratio correlated significantly with
PAL activity (R2 = 0.023) and ceruloplasmin activity
(R2 = 0.331), but not with PHM activity (data not shown).
Consistent with these relationships, subjects in the highest
quintile as sorted by serum PAL activity had signifi-
cantly higher Cu levels compared to the middle quintile
(p values < 0.05, data not shown). Therefore, serum PAL
activity may serve as an indicator of physical and overall
health in our study population.

SNP analysis
The large variation we observed in serum PHM and PAL
activities could arise from genetic variation in and/or
regulation of the PAM gene (Figure 3A) among our sub-
jects. To address this question, we focused on eight com-
mon SNPs (minor allele frequencies 16-44%) (Table 2). In
addition to the 3′ UTR rs5855 SNP, a set of seven haplo-
type TagSNPs (rs32680, rs249496, rs10038600, rs7733485,
rs11952361, rs10515341, rs17296280) which had been
Figure 1 PHM and PAL Activities. Graphs depict frequency histograms fo
(D) PHM and PAL activities for each subject are positively and linearly corre
identified from the 2008 HapMap CEU population dataset
(Table 2; Figure 3) were examined. This set of eight markers
provides correlation with the larger set of genotyped
SNPs in the HapMap dataset in this region with an aver-
age R2 = 0.925. The haploview pairwise marker linkage
disequilibrium (D’) and correlations (R2) are illustrated
in Figure 3B and C, respectively. Two blocks of SNPs
showing very limited recombination are evident: block 1
(rs32680, rs249496) and block 2 (rs10038600, rs7733485,
rs11952361, rs10515341).
We compared contrasting minor allele carriers vs. major

allele homozygotes (minor allele dominant effect model)
or contrasting minor allele homozygotes vs. major allele
carriers (minor allele recessive model) for each SNP for
serum amidating activity and Cu/ceruloplasmin levels
(Table 3). Four SNPs were associated with differences in
serum amidating activity. The upstream rs32680 minor
allele homozygotes had significantly lower serum PHM and
PAL activities (t = -2.38; p = 0.019 and t = -2.25; p = 0.026,
respectively), without a significant difference in the PHM/
r PHM (A) and PAL (B) activities, and the PHM/PAL activity ratio (C).
lated. *depicts p < 0.05 Pearson correlation.



Figure 2 Serum amidating enzyme activities and metals. Scatter plots depict PHM (A), PAL (B) and ceruloplasmin (C) activities versus serum
Cu. *depicts p < 0.05 Pearson correlation.
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PAL ratio. The minor T allele at this locus may lower PAM
enzyme activity through reduced expression of the PAM
gene. The 5′ UTR SNP rs249496 in the same block
(block 1), showed no such differences in serum amidating
activity. Lower PHM activities were present in the serum
of subjects homozygous for the major G allele at the
Figure 3 SNPs in PAM. (A) Schematic of the PAM gene with loci of SNPs
SNPs with haplotype blocks identified using the four-gamete rule [26]. Dark
recombination (i.e. 4-gamete having a frequency < 0.01). (B) LD plot showin
of 100 (i.e. |D’| = 1). (C) Haploview LD plot showing R2 correlation values.
rs10038600 locus in intron 3 (t = -2.07; p = 0.041), homo-
zygote subjects for the minor G allele at rs11952361 in in-
tron 10 (t = -2.01; p = 0.047), and the minor but ancestral
A allele at rs10515341 in intron 13 (t = -2.89; p = 0.005),
all of which are in the same haplotype block (block 2).
Although PAL activity followed a similar trend, none
examined in this study. (B,C) Haploview LD plot for eight PAM gene
ened blocks indicate SNP pairs without evidence of extensive
g D’ - Values shown represent 100 × |D’|, empty boxes represent value



Table 2 PAM SNPs studied

SNP Ch5 position Alleles GERP Location MAF

rs32680 102191715 C:T -1.99 9.8 kb-5′ 0.159

rs249496 102201590 G:C 3.31 5′UTR 0.441

rs10038600 102238502 G:T -0.469 IVS3 0.225

rs7733485 102279540 A:G 3.42 IVS6 0.271

rs11952361 102287920 A:G -0.47 IVS10 0.360

rs10515341 102317117 G:A -7.79 IVS13 0.274

rs17296280 102360747 A:C -0.328 IVS20 0.270

rs5855 102365186 A:G 5.93 3′UTR 0.326
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of the associations was significant. PHM/PAL ratios
were not different among these genotypes for any of
these SNP loci, suggesting that any potential regulatory
effects of these SNPs do not selectively influence ex-
pression of either enzyme.
With respect to serum Cu and ceruloplasmin, signifi-

cantly lower serum Cu was found in subjects homozy-
gous for the major G-allele at the rs249496 locus in the
5′ UTR (t = -2.43; p = 0.016) and for subjects homozy-
gous for the minor T-allele at the rs10038600 locus in
intron 3 (Table 3). Consistent with the tight association
between Cu and ceruloplasmin (Figure 2C), serum ceru-
loplasmin followed the same associations for these SNP
genotypes. Interestingly, the Cu/ceruloplasmin ratio, a
measure of relative un-bound serum Cu, was elevated in
homozygous subjects for the minor T-allele at
rs10038600 (t = 2.29; p = 0.024).

Discussion
In the current study, we characterized the distribution of
the two activities essential for serum amidating activity,
identified relationships between both enzyme activities
and their metal cofactors, and found several associations
between TagSNP polymorphisms and serum amidating
activity and serum Cu in a population of elderly men.
This is the first study to examine potential determinants
and clinical relevance of the two components of serum
amidating activity in human subjects; examination of
similar parameters in additional study populations is
needed to determine which conclusions can be
generalized.

Serum enzymes and their metal cofactors
Since PHM and PAL are derived from the same gene
product in mammals, with PHM requiring Cu and PAL
using Zn, assessment of their serum activities and their
associations provides insight into the nature and deter-
minants of serum amidating activity. The full-length, in-
tegral membrane PAM-1 protein, containing both PHM
and PAL domains, is the predominant isoform expressed
in mammalian tissues [27]. PHM and PAL are liberated
from the transmembrane domain of PAM-1 and made
soluble within the regulated secretory pathway by pro-
hormone convertases 1 and/or 2; on the plasma
membrane and in the endocytic pathway, other endo-
proteases, including α-secretase and γ-secretase, can
separate PAL from the transmembrane domain and
cleave within the PAM transmembrane domain [28]. It
is important to note that we added optimal divalent
metals to each enzyme assay, so the measured serum ac-
tivity reflects PHM and PAL protein content without re-
gard to individuals with low serum metal levels. That
the PHM and PAL activities were normally distributed,
varied among our subjects, and strongly correlated with
one another reflects the fact that both are usually pro-
duced together as a bifunctional enzyme.
Variation in human serum amidating activity was

greater than 20% (Figure 1), exceeding the less than 10%
variation observed in inbred mice [12,13]. Mice hetero-
zygous for a knock-out copy of the gene encoding PAM
have half the normal levels of serum amidating activity
and PAM protein in all tissues studied. These mice dis-
play profound physiological and behavioral deficits, re-
inforcing the importance of having the full complement
of PAM [12-14,16]. The degree of variation observed in
humans means that our small sample set included indi-
viduals with only half the mean value of PHM or PAL, a
potentially significant decrease (Figure 1). Over 75 rare
(<1%) mutations in the PAM gene that could inactivate
PHM or PAL or truncate the PAM protein have been
annotated in the human genome database (http://www.
ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=5066). How-
ever, no human disease state has yet to be attributed dir-
ectly to PAM dysfunction or insufficiency. Sequencing of
the PAM gene should be considered in patients with def-
icits that resemble the phenotype of Pam heterozygous
mice, including temperature dysregulation, metabolic
syndrome, anxiety and memory impairments.
Levels of PAL, but not PHM, correlated with serum

Cu, and neither activity correlated with serum Zn. Since
the major tissue sources of serum PHM and PAL remain
unknown, it is difficult to interpret this unexpected re-
sult. PHM and PAL bind their respective metal cofactors
with relatively low affinity compared to many other
metalloenzymes [20,29,30]. Some Cu-dependent en-
zymes are more stable with Cu bound than when not
metallated [31]; this does not appear to be the case for
PAM, since neither PHM nor PAL activity correlated
with its respective metal co-factor. When cultured pitu-
itary tumor cells expressing membrane PAM were made
copper deficient, secretion of PHM increased and endo-
cytic degradation of PAM decreased [32]. Similarly,
when C57BL/6 mice were fed a copper deficient diet,
serum PHM activity rose [12-14,16]. Although our data
suggest that PAM participates in the cell-type specific
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Table 3 PAM SNP genotype relationships with serum PHM and PAL activity and metals

SNP rs32680 rs249496 rs10038600 rs7722485

Geno-type CC (73) CT (39) TT (8) CC (18) CG (48) GG (54) GG (50) GT (52) TT (18) AA (64) AG (43) GG (13)

PHM 5.57±0.97§ 5.69±1.25§ 4.68±1.13§†‡ 5.54±1.02 5.56±1.03 5.54±1.19 5.31±1.05†‡ 5.78±1.14§ 5.56±1.00 5.58±1.24 5.58±0.91 5.32±0.96

PAL 19.3±4.2§ 19.7±4.6§ 15.9±4.7§†‡ 20.2±5.0 19.6±3.9 18.5±4.6 19.2±4.5 19.4±4.6 18.6±3.7 18.7±4.6 19.8±3.8 19.6±5.3

PHM/PAL 0.30±0.08 0.30±0.07 0.32±0.11 0.29±0.08 0.29±0.07 0.31±0.08 0.29±0.08 0.31±0.08 0.31±0.09 0.31±0.09 0.29±0.06 0.29±0.10

Cp 186±44 194±49 192±49 207±47§ 195±43 178±46§‡ 196±51§ 192±41§ 160±32§†‡ 182±45 197±49 198±34

Cu 996±209 1013±256 975±302 1076±218§ 1027±236 951±221§‡ 1045±254§ 984±223 921±144§‡ 981±226 1020±248 1030±188

Zn 846±284 911±263 828±199 879±273 853±283 872±268 903±305 834±237 853±274 871±250 866±321 839±213

Cu/Zn 1.26±0.36 1.17±0.37 1.18±0.23 1.31±0.39 1.26±0.29 1.17±0.40 1.23±0.35 1.24±0.37 1.16±0.37 1.19±0.38 1.26±0.36 1.27±0.24

Cu/Cp 5.51±1.17 5.31±0.89 5.08±1.00 5.33±1.05 5.38±1.05 5.48±1.12 5.43±0.97 5.22±1.05§ 5.94±1.30† 5.51±1.05 5.32±1.19 5.25±0.75
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Table 3 PAM SNP genotype relationships with serum PHM and PAL activity and metals (Continued)

SNP rs11952361 rs10515341 rs17296280 rs5855

Geno-type AA (60) AG (45) GG (15) AA (13) AG (46) GG (61) AA (61) AC (47) CC (12) AA (60) AG (47) GG (13)

PHM 5.64±1.01 5.60±1.09 5.03±1.36‡ 4.74±0.99§†‡ 5.69±1.16§ 5.62±1.00§ 5.55±0.97 5.66±1.21 5.11±1.20 5.65±1.03 5.54±1.06 5.10±1.43

PAL 19.3±4.1 19.5±5.0 18.0±4.0 17.1±3.7 19.5±5.0 19.4±4.1 19.3±4.2 19.4±4.7 17.8±4.7 19.4±4.2 19.4±4.8 17.7±4.1

PHM/PAL 0.31±0.08 0.30±0.07 0.29±0.09 0.29±0.09 0.30±0.07 0.30±0.08 0.30±0.08 0.30±0.07 0.30±0.09 0.30±0.08 0.30±0.07 0.30±0.09

Cp 183±38† 202±51§ 175±52 168±50† 198±48§ 186±42 190±44 191±49 173±41 186±38 195±53 180±51

Cu 989±212 1020±225 986±314 946±308 1023±232 994±212 989±195 1020±267 980±256 998±210 1002±228 1003±330

Zn 840±228 894±339 884±216 885±233 899±332 837±229 822±225 909±331 921±217 842±227 885±336 906±213

Cu/Zn 1.22±0.30 1.25±0.44 1.14±0.32 1.09±0.29 1.24±0.42 1.24±0.32 1.26±0.34 1.20±0.39 1.09±0.29 1.23±0.30 1.24±0.43 1.13±0.34

Cu/Cp 5.54±1.17 5.160.89 5.701.09 5.70±1.17 5.24±0.88 5.50±1.18 5.36±1.14 5.43±1.00 5.71±1.02 5.50±1.17 5.27±0.95 5.57±1.07

The number of subjects (120 total) of each genotype is shown in parenthesis.
Haplotype blocks are indicted by bold borders.
±SD.
Versus 1 OR 3 p<0.05 (t-test)§.
Versus 2 p<0.05 (t-test)†.
Versus 1 and 2, OR 2 and 3p<0.05 (t-test)‡.

G
aier

et
al.BM

C
Endocrine

D
isorders

2014,14:58
Page

8
of

10
http://w

w
w
.biom

edcentral.com
/1472-6823/14/58



Gaier et al. BMC Endocrine Disorders 2014, 14:58 Page 9 of 10
http://www.biomedcentral.com/1472-6823/14/58
control of copper homeostasis, we do not yet have a sat-
isfying understanding of the entire system.

Genetic regulation of serum amidating activity
Several hundred SNPs have been annotated in the PAM
gene (http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locu-
sId=5066), many of which code for potentially impactful
changes in amino acid sequence or regulation of PAM ex-
pression/splicing. The SNPs we examined are common
and have no impact on PAM primary structure, yet they
showed significant correlations with serum amidating
activity and correlate with associated metal levels.
We observed significant minor allele associations with

reduced serum PHM activity in block 1 (rs32680) and
block 2 (rs11952361 and rs10515341), consistent with a
minor allele recessive model for these markers. Significantly
reduced PAL activity was found for minor allele homo-
zygotes only at rs32680, with a trend towards reduction
for minor allele homozygotes at the two block 2 SNPs
(rs11952361 and rs10515341). The concordance of ef-
fects for PHM and PAL at these three markers likely
reflects their production from the same gene product.
Minor splice variants encoding only PHM have been
identified [33] and one or more of these SNPs may be
involved in regulating such splicing events.
These SNPs could affect serum amidating activity

through a variety of mechanisms. Up- and down-stream
UTR SNPs can alter mRNA stability through microRNA
binding. Intron SNPs can affect alternative splicing, which
determines whether PAM is an integral membrane or
soluble protein and whether an endoproteolytic cleavage
site separates PHM from PAL (Figure 3A).
SNPs in both blocks 1 (rs249496) and 2 (rs10038600)

were associated with differences in serum Cu. Similar
relationships were found for ceruloplasmin, as might
be expected given the strong correlation between Cu
and ceruloplasmin. At rs10038600, however, homozygosity
for the minor T-allele was associated with lower serum
Cu and even lower ceruloplasmin as the Cu/ceruloplasmin
ratio was elevated in these individuals. Interestingly, homo-
zygosity for the major G-allele at the same locus was associ-
ated with lower serum PHM activity, possibly reflecting a
dual influence or potential regulatory influence of PHM
and Cu homeostasis (see above). This SNP is located at
the 5′ end of intron 3, a prime position to influence al-
ternative splicing of exon 3; this could in turn affect
Cu binding of PHM. In vitro experiments are necessary
to test this hypothesis.

Conclusions
The tissue sources of serum amidating activity have not
yet been identified. While studies of PAM processing and
secretion in a pituitary tumor cell line identified a regula-
tory role for Cu [32], it is not yet possible to extend these
in vitro studies to the in vivo situation. The determinants
of serum amidating activity are clearly complex and need
to be studied as part of the multi-organ Cu homeostasis
network now beginning to be elucidated [34]. The data
presented here support the idea that manipulation of
the PAM gene in laboratory models may be a useful
tool to study this complex relationship. Additionally,
serum amidating activity may serve as a biomarker for
certain disease states, including measures of frailty and
physical health in the elderly and in Cu deficiency.
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