
Salem et al. BMC Endocrine Disorders 2014, 14:2
http://www.biomedcentral.com/1472-6823/14/2
RESEARCH ARTICLE Open Access
Contribution of SLC30A8 variants to the risk of
type 2 diabetes in a multi-ethnic population: a
case control study
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Abstract

Background: Several studies have shown the association of solute carrier family 30 (zinc transporter) member 8
(SLC30A8) rs13266634 with type 2 diabetes (T2D). However, the association of alternative variants and haplotypes of
SLC30A8 with T2D have not been studied in different populations. The aim of this study is to assess the association
of the alternative SLC30A8 variants, rs7002176 and rs1995222 as well as the most common variant, rs13266634 and
haplotypes with glutamic acid decarboxylase antibodies (GADA) negative diabetes in Malaysian subjects.

Methods: Single nucleotide polymorphisms (SNPs) of SLC30A8; rs7002176, rs1995222 and rs13266634 were
genotyped in 1140 T2D and 973 non-diabetic control subjects. Of these, 33 GADA positive diabetic subjects and
353 metabolic syndrome (MetS) subjects were excluded from subsequent analysis.

Results: The recessive genetic model controlled for age, race, gender and BMI shows that the alternative SLC30A8
variant, rs1995222 is associated with GADA negative diabetes (OR = 1.29, P = 0.02) in Malaysian subjects. The most
common variant, rs13266634 is also associated with GADA negative diabetes (OR = 1.45, P = 0.001). This association
is more pronounced among Malaysian Indians (OR = 1.93, P = 0.001). Moreover, the CG haplotype and CG-CG
diplotype have been equally associated with increased diabetic risk (OR = 1.67, P = 8.6 × 10-5).

Conclusions: SLC30A8 SNPs and haplotypes are associated with GADA negative diabetes in Malaysian subjects, and
this association is markedly higher among Malaysian Indian subjects.
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Background
Type 2 diabetes (T2D) is a serious public health problem
with its prevalence rapidly increases globally. In the next
two decades, Asian countries will be hit hardest, particu-
larly China and India where the diabetic populations will
more than double [1-3]. In Malaysia, more than 2.1 mil-
lion of the adult population have diabetes (11.7%) [3].
T2D is a complicated metabolic disorder, characterized
by insulin resistance and/or pancreatic β-cell dysfunction
resulting from both genetic and environmental factors
[2,4,5]. Among T2D patients, latent autoimmune diabetes
of adults (LADA) occurs in 2-12% of individuals [6-9].
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LADA can be distinguished by the presence glutamic acid
decarboxylase antibodies (GADA) in adult diabetic pa-
tients who clinically are similar to T2D subjects at diagno-
sis [7,10-12] and are insulin independent for at least in the
first six months [13].
The interaction of a stable genetic background with

the rapidly changing environment has resulted in rapid
changes in the prevalence of T2D observed over recent
decades [14]. Insulin resistance has been proposed to be
a major driver of progression to T2D. However, most of
the validated genetic variants are involved in β-cell func-
tion. The genome-wide association studies (GWAS) ap-
proach has dramatically increased the number of T2D
susceptibility loci, expanding the list from five loci in
2007 to more than 60 loci in 2012. The association to
T2D of more than 20 newly reported loci in Asians
[15,16] and Europeans [17] needs to be studied in other
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populations as well. A consistent association of T2D risk
with variants of the pancreatic β-cell–specific zinc trans-
porter gene SLC30A8 has been discovered in European
subjects [18-23]. This has been also reported in multi-
ethnic case-control studies, including Asian [2,24-32],
Arabian [33], European [17] and American populations
[34]. The link between impaired β-cell function and Zn
transport activity by SLC30A8 has been reported in sev-
eral studies [35-39]. The consensus is that SLC30A8 is
crucial for insulin processing and secretion, and the
major contribution of the SLC30A8 SNPs to T2D is me-
diated through defects in insulin secretion rather than
action. The SLC30A8 gene encodes the ZnT-8 zinc
transporter, which is exclusively expressed in pancreatic
β-cells and co-localized with insulin-containing secretory
granules [40,41]. SLC30A8 variants impair islet ZnT8
expression, insulin secretion, or glucose homeostasis
[39,42,43]. In addition, these variants are associated with
the production of a less active zinc transporter protein,
suggesting less efficiency of zinc accumulation and insu-
lin crystallization [44]. ZnT-8 is thought to be a key pro-
tein for insulin secretion by regulating the homeostasis
of zinc, which is an essential metal ion for insulin stor-
age and secretion into intracellular vesicles [45,46].
Studies on the association of variants of the SLC30A8

gene with T2D have been concerned with the most com-
mon SNP rs13266634. However, the association of alter-
native SLC30A8 SNPs and haplotypes with T2D has not
been studied in different populations. The aim of this in-
vestigation was to study the association of alternative
SLC30A8 SNPs (rs7002176, rs1995222) and haplotypes
with GADA negative diabetes, and further to replicate
the association of the most common variant, rs13266634
in Malaysian subjects.

Methods

1 Subjects and data collection

This hospital-based case-control study was been
conducted at the University Malaya Medical Centre
(UMMC), Kuala Lumpur. Patients previously diag-
nosed with T2D (FPG ≥ 7.0 mmol/l), who attended
the UMMC for treatment were invited to participate
in this study (the case group). For the control group,
subjects who were enrolled for general health
screening at UMMC (FPG ≤ 6.1 mmol/l) were
approached to participate in this study. GADA
positive diabetic patients and metabolic syndrome
(MetS) subjects were excluded from this study. Data
collection for this study took place between 2009
and 2011. Details regarding the study design, including
subjects, data collection, demographic parameters,
biochemical analysis and quality control have been
reported previously [47]. This study has been approved
by the Medical Ethics Committee of University
Malaya Medical Centre. A written informed consent
was obtained from each participant in the study.

2 SNPs selection and genotyping
SLC30A8 SNPs, rs7002176, rs1995222 and
rs13266634 were been selected based on previous
studies [18,48]. Genomic DNA was isolated from
peripheral blood leukocytes using Wizard® Genomic
DNA Purification Kit (Promega Corporation,
Madison, WI, USA) according to the manufacturer’s
protocol. The SNPs were genotyped by pre-designed
Taqman genotype assays (C_29002970_10,
C_1421536_10 and C_357888_10 respectively,
Applied Biosystems Inc, Foster City, USA) according
to the manufacturer’s protocol using StepOnePlus
Real-Time PCR system (Applied Biosystems Inc,
Foster City, USA). No-template controls (NTCs)
were included together with samples in each batch.
The genotype call rates for SNPs, rs7002176,
rs1995222 and rs13266634 were 98.5% (1130
diabetes; 951 non-diabetes), 97.1% (1108 diabetes;
943 non-diabetes) and 99.1% (1136 diabetes; 960
non-diabetes) respectively. The concordance rate,
based on blind duplicate comparisons (10% of the
samples that were blindly re-genotyped) was 100%.

3 Statistical analysis
Deviation of genotypes from Hardy-Weinberg
Equilibrium was assessed with the DeFinetti program
(http://ihg.gsf.de/cgi-bin/hw/hwa1.pl from the Institute
of Human Genetics). The linkage disequilibrium (LD)
between SNPs and the construction of haplotypes and
diplotypes of related SNPs were performed with SNP
& Variation Suite v7.x program (Golden Helix, Bozeman,
MT, USA). Social Package of Statistical Science (SPSS
version 11.5, LEAD Technologies; Inc. USA) was used
to study the associations of SNPs of SLC30A8 using
recessive, dominant and additive genetic models with
T2D. These associations were evaluated by logistic
regression analysis controlled for age, gender and body
mass index. Significance was inferred when P < 0.05.

Results and discussion
The study included 1140 T2D and 973 non-diabetic con-
trol subjects. GADA positive diabetic subjects are classi-
fied as LADA since the genetic causes of this class of
diabetes are similar to type 1 diabetes. To minimize vari-
ation among the diabetic group, the 33 GADA positive
diabetic subjects were excluded from the study. Applica-
tion of the new metabolic syndrome (MetS) criteria [49]
on non-diabetic control subjects revealed that 353 sub-
jects had MetS. Metabolic syndrome is a strong risk factor
for diabetes which may affect the association study and
Hardy-Weinberg Equilibrium. Hence, subjects in the con-
trol group with MetS were excluded from subsequent

http://ihg.gsf.de/cgi-bin/hw/hwa1.pl


Salem et al. BMC Endocrine Disorders 2014, 14:2 Page 3 of 7
http://www.biomedcentral.com/1472-6823/14/2
analysis. The metabolic and diabetic parameters were been
significantly different between the target and control
groups (Table 1).

1 Association of SLC30A8 SNPs with GADA negative
diabetes
Tabl
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SNPs of SLC30A8, rs7002176, rs1995222 and
rs13266634 showed no deviation from Hardy-Weinberg
Equilibrium in the control group (P-value = 0.36, 0.54,
0.40 respectively). The alternative SLC30A8 SNPs;
rs7002176 and rs1995222 were evaluated in this study.
The logistic regression model (adjusted for age, race,
gender and BMI) for rs1995222 showed association
(recessive genetic model, OR = 1.29; P = 0.02) with
GADA negative diabetes in Malaysian subjects. This
finding is in contrast with findings in Pima Indian
[48]. However, the SNP rs7002176 showed no associ-
ation with GADA negative diabetes, a finding which is
e 1 Demographic and biochemical characterizations of partici

graphy and biochemical profiles N

er % Male/female

% Malay

Chinese

Indian

years) 4

P-value

mass index (kg/m2) 2

P-value

circumference (cm) 8

P-value

lic blood pressure (mmHg)

P-value

lic blood pressure (mmHg)

P-value

g plasma glucose (mmol/l) 4

P-value

g plasma insulin (pmol/l) 59

P-value

A-β 111.3

P-value

A-IR 1

P-value

density lipoprotein (mmol/l) 1

P-value

ceride (mmol/l) 1

P-value

sults presented represent geometric means (95% confidence interval of the mean),
ic acid decarboxylase antibodies.
in agreement with Rong et al. [48]. The finding of
non-association might be explained by the differences
in genetic background, genetic model used and
ethnicities between the populations [17,26] (Table 2).
The most common variant, rs13266634 showed
significant association with GADA negative diabetes
in Malaysian subjects (recessive genetic model,
OR = 1.45, P = 0.001). This finding is in agreement
with previous studies in various Asian populations
[2,24-32]. However, the association of this SNP with
GADA was different for subjects of the three main
Malaysian races (Malay, Chinese and Indian). The
rs13266634 SNP was strongly associated with
GADA negative diabetes among Malaysian Indian
subjects (recessive genetic model, OR = 1.93, P = 0.001),
but not with Malaysian Chinese and Malay subjects
(Table 2). Tan et al. [30] have shown similar
association with diabetes among Singaporean Malay
pants

ormal control GADA negative diabetes

n = 620 n = 1107

61.6/38.4 67.6/32.4

41.0 38.4

32.9 26.5

26.1 35.1

9.5(48.6–50.3) 51.3(50.8–51.9)

0.001

4.6(24.3–25.0) 27.4(27.1–27.7)

<0.001

5.2(84.2–86.2) 96.1(95.4–96.8)

<0.001

128(127–130) 134(133–135)

<0.001

80(79–80) 81(80–82)

0.005

.98(4.94–5.02) 7.89(7.73–8.05)

<0.001

.65(56.35–63.15) 98.15(94.08–102.39)

<0.001

5(107.19–115.67) 70.84(67.41–74.44)

<0.001

.27(1.20–1.35) 2.45(2.34–2.55)

<0.001

.34(1.32–1.37) 1.09(1.07–1.10)

<0.001

.13(1.09-1.17) 1.58(1.53–1.63)

<0.001

which evaluated by ANOVA. Bolded values are significant. GADA:



Table 2 Association of SLC30A8 polymorphism with GADA negative diabetes among Malaysian subjects and ethnic
groups

SLC30A8
SNPs

Control GADA negative
diabetes

Recessive Dominant Additive

OR (95% CI)

Freq. 11/12/22 Freq. 11/12/22 P-value

rs7002176 (A > T)

Combined* 0.42 113/284/208 0.45 222/541/335 1.12(0.85–1.46) 0.43 1.17(0.93–1.47) 0.18 1.11(0.95–1.29) 0.19

Malay# 0.37 35/115/100 0.42 79/191/150 1.61(1.00–2.59) 0.05 1.16(0.80–1.67) 0.43 1.23(0.96–1.57) 0.11

Chinese# 0.48 46/98/55 0.47 56/160/75 0.70(0.43–1.14) 0.15 1.06(0.67–1.65) 0.81 0.89(0.67–1.19) 0.43

Indian# 0.43 32/71/53 0.47 87/190/110 1.12(0.70–1.78) 0.65 1.32(0.88–1.99) 0.18 1.22(0.93–1.60) 0.15

rs1995222 (A < G)

Combined* 0.63 238/273/87 0.67 498/440/138 1.29(1.03–1.62) 0.02 1.17(0.85–1.60) 0.34 1.18(1.01–1.39) 0.039

Malay# 0.60 88/116/40 0.64 167/189/54 1.22(0.85–1.77) 0.28 1.55(0.93–2.58) 0.10 1.24(0.95–1.61) 0.11

Chinese# 0.54 57/97/43 0.54 87/133/66 1.16(0.75–1.79) 0.51 0.97(0.60–1.56) 0.89 1.05(0.80–1.38) 0.73

Indian# 0.78 93/60/4 0.80 244/118/18 1.26(0.85–1.87) 0.25 0.27(0.06–1.22) 0.09 1.11(0.79–1.56) 0.53

rs13266634 (C > T)

Combined* 0.60 223/284/105 0.65 506/415/181 1.45(1.16–1.81) 0.001 0.99(0.75–1.32) 0.96 1.18(1.01–1.37) 0.03

Malay# 0.58 84/127/42 0.60 158/192/73 1.16(0.80–1.66) 0.44 0.85(0.53–1.35) 0.49 1.02(0.79–1.30) 0.90

Chinese# 0.50 56/90/56 0.49 85/115/91 1.14(0.74–1.76) 0.55 0.93(0.61–1.44) 0.76 1.03(0.79–1.33) 0.84

Indian# 0.74 83/67/7 0.82 263/108/17 1.93(1.31–2.85) 0.001 0.81(0.31–2.14) 0.68 1.58(1.14–2.17) 0.006

Risk allele frequency (Freq.) and genotype counts in individuals with GADA negative diabetes and control subjects. 11, homozygous of major allele; 12,
heterozygous; 22, homozygous of minor allele. GADA, glutamic acid decarboxylase antibodies. Risk allele is denoted in boldface. Bolded values are significant.
*Controlled for age, race, gender and BMI. #Controlled for age, gender and BMI. The outliers (studentized residual is greater than 2.0 or less than −2.0)
were excluded.
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subjects, whereas, their finding among Singaporean
Chinese and Indian subjects have shown no
association. This discrepancy in association of this
SNP with GADA among Asian populations might be
due to the small sample size used in the analysis. In
addition, the environmental risk profile, lifestyle, body
composition and linkage disequilibrium patterns
might be involved. Likewise, the association between
rs13266634 in the SLC30A8 gene locus and
susceptibility to T2D has been demonstrated in
Caucasian populations [19,20,22,23]. The rs13266634
SNP is a nonsynonymous Arg325→Trp325 variant in
the zinc transporter SLC30A8 [19,50]. Since SLC30A8
encodes a zinc transporter expressed solely in the
secretory vesicles of β-cells, and is implicated in the
final stages of insulin biosynthesis involving
co-crystallization with zinc [18], its association
with T2D is to be expected.
Previous studies had suggested that the major
contribution of the SLC30A8 SNPs to T2D was
mediated through defects in insulin secretion rather
than action [35]. However, neither of these SNPs
showed an association with HOMA-β nor HOMA-IR
(Additional file 1: Table S1). Similar outcomes have
been reported in other studies [2,26]. These
conflicting results on the role of SLC30A8 in insulin
secretion might be explained by the different genetic
background between different populations. Moreover,
other gene interactions, that may also have contributed
in the metabolism and regulation of insulin
activity [46].

2 Association of SLC30A8 haplotypes and diplotypes
with GADA negative diabetes
Two-SNP haplotype and diplotype blocks
(rs1995222 and rs13266634) with significant LD
were identified (Figure 1). There was a significant
linkage between SNPs rs13266634 and rs1995222
(r2 = 0.20), although, the distance between the two
SNPs is approximately 45 kb. This finding is similar
to that reported in Europeans (r2 = 0.19). However,
SNP rs13266634 is near to SNP rs7002176, the
distance between the two SNPs is approximately
2.7 kb, but there is no significant linkage between
them. The haplotypes and diplotypes with frequency
< 2% of the combined races were been excluded
from subsequent analysis. The logistic regression
model (adjusted for age, race, gender and BMI)
showed that the haplotype CG and the diplotype
CG-CG (containing the risk alleles of the SNPs) are
equal risk factors for T2D in the combined races
(OR = 1.67, P = 8.6 × 10-5), and this risk is higher in
diabetic Indian subjects (OR = 1.93, P = 0.001)
(Table 3). The haplotype (CG) and diplotype
(CG-CG) showed a stronger association with GADA



Figure 1 Pairwise linkage disequilibrium among SLC30A8 SNPs in Malaysian subjects.
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negative diabetes than single individual SNPs. This
strength could be attributed to the possible epistatic
interaction between these SNPs in determining
overall risk of T2D. The haplotypes and diplotypes
are not associated with GADA negative diabetes in
Malay and Chinese subjects except the diplotype
AC-AT is associated with protection against diabetes
e 3 Association of SLC30A8 common haplotypes and diplotyp
s and Indian subjects

66634,
95222

Combined races

Frequency P-value OR (95% CI)

Control GADA negative
diabetes

types

AT 0.44 0.39 0.10 0.83(0.67–1.03)

CG 0.21 0.32 8.6 × 10-5 1.67(1.29–2.15)

GT 0.17 0.14 0.08 0.77(0.58–1.03)

AC 0.14 0.13 0.59 0.92(0.67–1.25)

types

-CG 0.21 0.32 8.6 × 10-5 1.67(1.29–2.15)

-AT 0.24 0.22 0.36 0.89(0.69–1.14)

-GT 0.14 0.11 0.09 0.76(0.55–1.05)

-AC 0.12 0.11 0.62 0.92(0.67–1.27)

T-AT 0.08 0.07 0.62 0.90(0.60–1.36)

-AT 0.07 0.04 0.001 0.43(0.27–0.70)

lled for age, gender, race and BMI. The outliers (studentized residual is greater than
oxylase antibodies.
in Malay subjects (OR = 0.26, P = 0.0002) (Additional
file 1: Table S2). The frequencies of haplotype GT
and diplotype CG-GT are higher in Indian subjects
without diabetes compared to Indian subjects with
diabetes (OR = 0.51; 0.48, P = 0.008; 0.005, respectively)
(Table 3). This study is a hospital-based, and the sam-
pling method is non-probability. Thus, the sampling
es with GADA negative diabetes among combined

Indians

Frequency P-value OR (95% CI)

Control GADA negative
diabetes

0.23 0.20 0.28 0.78(0.50–1.23)

0.36 0.51 0.001 1.93(1.31–2.85)

0.22 0.12 0.008 0.51(0.31–0.84)

0.15 0.15 0.91 0.97(0.57–1.65)

0.36 0.51 0.001 1.93(1.31–2.85)

0.20 0.16 0.15 0.70(0.43–1.13)

0.20 0.11 0.005 0.48(0.29–0.80)

0.14 0.13 0.94 1.02(0.58–1.79)

0.02 0.01 0.30 0.48(0.12–1.91)

0.006 0.01 NA NA

2.0 or less than−2.0) were excluded. GADA, glutamic acid
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for this study has limited its generalization to the
whole Malaysian population. Sub-grouping of subjects
according to races resulted in small sample size, which
likely gives insufficient power to provide an evidence
for association within the ethnic subgroups.
Conclusions
The most common SLC30A8 variant, rs13266634 is as-
sociated with GADA negative diabetes in Malaysian sub-
jects, and this association is more pronounced among
Malaysian Indian subjects. In addition, the alternative
SLC30A8 variant, rs1995222 is significantly linked with
rs13266634 (r2 = 0.2) and shows a mild association with
GADA negative diabetes. The risk of these SNPs is
strengthened by the haplotypes and diplotypes contain-
ing the SNPs risk alleles.
Additional file

Additional file 1: Table S1. Impact of SLC30A8 SNPs, haplotypes and
diplotypes on beta-cell function (HOMA-β) and insulin resistance (HOMA-IR)
in normal Malaysian subjects. Table S2. Association of SLC30A8 common
haplotypes and diplotypes with GADA negative diabetes among Malaysian
Malay and Chines subjects.
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