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Abstract
Background  Body mass index (BMI) and lipid disorders are both known to be strongly associated with the 
development of diabetes, however, the indirect effect of lipid parameters in the BMI-related diabetes risk is currently 
unknown. This study aimed to investigate the mediating role of lipid parameters in the association of BMI with 
diabetes risk.

Methods  We assessed the association of diabetes risk with BMI, as well as lipid parameters including high-density 
lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-CF and LDL-CS), triglycerides(TG), total 
cholesterol(TC), remnant cholesterol(RC), non-HDL-C, and combined indices of lipid parameters with HDL-C (RC/
HDL-C ratio, TG/HDL-C ratio, TC/HDL-C ratio, non-HDL/HDL-C ratio, LDL/HDL-C ratio) using data from 15,453 subjects 
in the NAGALA project. Mediation models were used to explore the mediating role of lipid parameters in the 
association of BMI with diabetes risk, and mediation percentages were calculated for quantifying the strength of the 
indirect effects. Finally, receiver operating characteristic curve (ROC) analysis was used to compare the accuracy of 
BMI and BMI combined with lipid parameters in predicting incident diabetes.

Results  Multivariate regression models, adjusted for confounding factors, demonstrated robust associations 
of lipid parameters, BMI, with diabetes risk, with the exception of TC, LDL-CF, LDL-CS, and non-HDL-C. Mediation 
analysis showed that lipid parameters except TC, LDL-CF, LDL-CS, and Non-HDL-C were involved in and mediated the 
association of BMI with diabetes risk, with the largest mediation percentage being the RC/HDL-C ratio, which was 
as high as 40%; it is worth mentioning that HDL-C and HDL-C-related lipid ratio parameters also play an important 
mediating role in the association between BMI and diabetes, with the mediator proportion being greater than 30%. 
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Background
Diabetes is a chronic metabolic disorder characterized 
by disturbances in blood glucose metabolism, leading to 
systemic involvement of multiple organs and systems [1]. 
The latest research forecasting models reported that the 
global prevalence of diabetes is 529 million in 2021, and 
driven by the obesity epidemic [2], a staggering 1.31 bil-
lion people are projected to live with diabetes globally by 
2050 [3]. In addition, the incidence of diabetes is gradu-
ally showing a trend towards younger age [4], which 
poses a new and great challenge to global public health. 
Therefore, early identification of diabetes risk and early 
intervention based on risk factors is essential to reduce 
the incidence of diabetes as well as to slow down the dis-
ease progression.

It is well known that obesity is closely associated with 
the development of diabetes and is a key driver of the 
diabetes epidemic [2, 5, 6]. BMI is the most classic and 
simple measure of obesity [7] and an important obesity 
index for measuring the risk of developing diabetes [8–
13]. To date, there is still no clear-cut mechanism link-
ing BMI directly to the development of diabetes, and the 
main arguments around obesity leading to diabetes cur-
rently focus on insulin resistance (IR), impaired β-cell 
function, and metabolic damage from chronic inflamma-
tion [14–16]. Recently, an increasing number of studies 
have focused on the impact of obesity-related disorders 
of lipid metabolism on the pathogenesis of diabetes, and 
researchers have used metabolomics to identify a range 
of lipid markers of obesity-related diabetic risk, mainly 
including phospholipids and sphingolipids [17–21]. 
These findings suggest that lipids may play an impor-
tant role in obesity-related diabetes risk. Considering the 
important value of BMI in risk assessment of diabetes 
and the potential impact of lipid metabolism on diabe-
tes, it is important to further clarify the impact of lipid 
parameters on the association of BMI with diabetes risk 
in real-world studies, which could provide an important 
basis for clarifying the pathogenesis and the daily risk 
management of diabetes. To clarify the answer to this 
question, in the current study we used mediation analy-
sis on data from 15,453 subjects of the NAGALA cohort 
to investigate lipid parameters that potentially medi-
ate the link of BMI with diabetes risk, quantifying their 

contributions and identifying the most impactful lipids 
for diabetes risk management.

Methods
Data source and study population
To elucidate the role of lipids in BMI-related diabe-
tes risk, we extracted dataset from 20,944 participants 
in the NAGALA (1994–2016) project. The dataset was 
collected by Okamura’s team and stored in the Dryad 
public database (https://datadryad.org/stash/dataset/
doi:https://doi.org/10.5061/dryad.8q0p192). Based on 
Dryad’s Data Sharing Terms of Service, researchers can 
use publicly available data from the database to conduct 
in-depth analyses to explore new discoveries that will 
benefit academic progress. Detailed information about 
the NAGALA cohort study can be found in the previ-
ously published research [22]. According to the new 
research objectives, we further excluded the subjects 
with diabetes, impaired fasting glucose, liver disease, 
excessive drinking, incomplete data, using medicine at 
baseline, and withdraw survey with unknown reason, and 
finally, 15,453 subjects were included in the current study 
(Fig.  1). The NAGALA project has been authorized by 
the Ethics Committee of Murakami Memorial Hospital, 
and obtained informed consent from all subjects for their 
data usage [22]. This study was a secondary analysis of 
the NAGALA cohort study, which has been approved by 
the Ethics Committee of Jiangxi Province People’s Hospi-
tal. Furthermore, since the publicly available dataset has 
been anonymized, the Ethics Committee of Jiangxi Pro-
vincial People’s Hospital waived the need for informed 
consent from the subjects.

Data collection, measurement, and calculation
All variables in the current study were contained in the 
NAGALA dataset [22], which were measured by the 
medical personnel using standardized methods and 
recorded in standardized questionnaires, including sys-
tolic/diastolic blood pressure (S/DBP), age, sex, weight, 
height, waist circumference (WC), TC, fasting plasma 
glucose (FPG), alanine aminotransferase (ALT), HDL-
C, TG, gamma-glutamyl transferase (GGT), glycated 
hemoglobin (HbA1c), aspartate aminotransferase (AST), 
drinking status, smoking status, habit of exercise, and 

Finally, based on the ROC results, we found that the prediction performance of all lipid parameters in the current 
study except TC was significantly improved when combined with BMI.

Conclusion  Our fresh findings suggested that lipid parameters partially mediated the association of BMI with 
diabetes risk; this result indicated that in the context of diabetes risk screening and disease management, it is 
important to not only monitor BMI but also pay attention to lipid parameters, particularly HDL-C and HDL-C-related 
lipid ratio parameters.
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fatty liver. Among them, the blood biochemical indica-
tors were measured and recorded by the automatic bio-
chemical analyzer after all subjects fasting at least 8  h. 
Lifestyle factors were defined as following: (1) Drinking 
status was grouped according to the alcohol consump-
tion in the past month, including non or little (< 40 g/w), 
light (40–139 g/w), moderate (140–279 g/w), and heavy 
(> 280 g/w) [23]. (2) Smoking status was grouped as non-
smoking, former smoking, and current smoking. (3) Hav-
ing exercise habits required engaging physical activity at 
least once a week. Moreover, fatty liver was diagnosed by 
gastroenterology experts based on abdominal ultrasound 
examination results of the subjects [24]. Based on base-
line parameter information, we further calculated BMI 
and multiple lipid parameters, with the detailed calcula-
tion process presented in Fig. 2 [25–32]. The main results 
of the study on LDL-C are based on calculations using 
the Modified Friedewald Formula. To ensure the robust-
ness of the results, we also used the Sampson formula to 
calculate LDL-C concentrations [26] (Fig. 2). In addition, 
to differentiate between the two methods of calculation, 
we referred to LDL-C results from the Modified Friede-
wald formula as LDL-CF and those from the Sampson 
formula as LDL-CS.

Diagnosis of diabetes
In the present study, the diagnosis of diabetes followed 
the criteria set by the American Diabetes Association 
[33], as follows: HbA1c ≥ 6.5% or FPG ≥ 7.0 mmol/L, 
along with self-reported diabetes.

Statistical analysis
Subjects were grouped based on whether incident diabe-
tes was diagnosed during follow-up [22]. We employed 
Marginal Structural Models to compute and quantify 
the magnitude of differences in baseline characteris-
tics between diabetes and non-diabetes groups (prior to 
quantifying the differences, we performed BOX-COX 
transformations for skewed-distributed data), and differ-
ences greater than 10% were considered statistically sig-
nificant [34, 35].

Prior to validating the mediation effect of lipid parame-
ters in the association of BMI with diabetes risk, we com-
puted the variance inflation factor for lipid parameters, 
BMI, and each covariate using linear regression equa-
tions, and covariates with variance inflation factor > 5 
were considered collinear variables [36]. Based on the 
results of collinearity screening, we observed collinearity 
between all lipid parameters and weight and DBP, as well 
as between BMI and weight, DBP, and WC (Supplemen-
tary Tables 1–12); consequently, these variables (weight, 

Fig. 1  Flow chart of study participants
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DBP, and WC) will be excluded in subsequent multivari-
able regression models and mediation analyses.

We followed the approach recommended by Profes-
sor VanderWeele for conducting the mediation analysis 
[37, 38]. First, we employed a series of multivariable Cox 
regression models to examine the associations of lipid 
parameters/BMI with diabetes risk. In these models, we 
progressively adjusted for important demographic char-
acteristics (height, age, sex), lifestyle factors (habit of 
exercise, drinking and smoking status), fatty liver, and 
metabolic factors related to blood pressure, blood glu-
cose, and liver enzymes (SBP, GGT, FPG, ALT, HbA1c, 
AST) [1, 39, 40]. The strategy and process of progressive 
adjustment were conducted following the Strengthening 
the Reporting of Observational Studies in Epidemiol-
ogy, and these steps were presented in the main analy-
sis. Furthermore, when validating the association of BMI 
with diabetes risk, we conducted additional adjustments 
for the mediating variables (11 lipid parameters) and 
observed whether the association of BMI with diabetes 
weakened, to assess if the prerequisites for conducting 
a mediation analysis were met [37, 38]. Subsequently, 
we employed multiple linear regression to examine the 
association of BMI with lipid parameters, following the 

adjustment strategy outlined earlier [1, 41, 42]. Finally, 
we constructed mediation models to determine whether 
lipid parameters mediated the association of BMI with 
diabetes risk, and quantified the mediation effects of 
lipid parameters by calculating the mediation percent-
age, which is the ratio of the indirect effect to the total 
effect. To assess the significance of the mediation effects, 
we employed the Bootstrap sampling method with 1000 
iterations. It is worth noting that the triglycerides glucose 
(TyG) index is calculated from parameters such as blood 
lipids and blood glucose. Considering that a large num-
ber of recent researches have shown that the TyG index 
is strongly associated with BMI and diabetes, in the cur-
rent study we also examined the mediating role of the 
TyG index in the risk of BMI-related diabetes. Finally, 
ROC analysis was used to calculate the accuracy of BMI 
and BMI combined with lipid parameters in predicting 
incident diabetes, and the DeLong test was used to com-
pare the area under the curve (AUC) among the models. 
All analyses were conducted using R version 3.4.3 and 
Empower(R) version 4.1. Two-tailed tests were employed, 
and statistical significance was set at P < 0.05.

Results
Characteristics of study subjects
A total of 15,453 subjects with a mean age of 43.7 ± 8.9 
years were included in this study, and a total of 372 were 
diagnosed with new-onset diabetes. Table  1 shows the 
differences in the baseline characteristics of the study 
subjects grouped according to whether or not they were 
diagnosed with diabetes. We observed significant dif-
ferences (standardized difference > 10%) in all baseline 
variables between the diabetes and non-diabetes groups. 
It is worth mentioning that the most substantial dispar-
ity between the two groups lay in the baseline glucose-
related measures (FPG and HbA1c), with a standardized 
difference exceeding 100%. Furthermore, we observed 
that the BMI of diabetic participants was significantly 
higher than that of non-diabetic participants, with a 
standardized difference between the two groups reach-
ing 86%. Lastly, it’s important to mention that in terms of 
lipid parameters, the standardized difference for the RC/
HDL-C ratio was the largest (88%).

Relationship of BMI with diabetes
After thorough adjustment for potential confounders, 
the current study also confirmed a significant positive 
correlation of BMI with the risk of diabetes (Table 2). In 
models 1 to 3, we progressively adjusted for all covari-
ates except lipid parameters (mediating variables), and 
the hazard ratio (HR) for BMI-related diabetes risk was 
1.096 in Model 3. Furthermore, we also included the lipid 
parameters (mediating variables) individually as covari-
ates in the model (Table  2, models 4–14); the results 

Fig. 2  Formulas for calculating BMI and lipid parameters
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revealed that except for the models where TC (Model 
4: HR = 1.097) and LDL-CF (Model 7: HR = 1.096) were 
incorporated as covariates for adjustment, other models 
indicated a weakening of the association of BMI with dia-
betes risk. These findings suggested that, apart from TC 
and LDL-CF, other lipid parameters might potentially 
mediate the association of BMI with diabetes risk.

Relationship of lipid parameters with incident diabetes
We proceeded to run three multivariate Cox regression 
models to validate the associations of lipid parameters 
with diabetes risk (Table  3). It can be observed that in 
Model I, all lipid parameters were associated with diabe-
tes risk; among them, apart from HDL-C which exhibited 
a negative correlation with diabetes, the rest of the lipid 
parameters showed a positive correlation with diabetes. 
However, in Models II and III, with further adjustments 
for demographic characteristics, lifestyle factors, fatty 

Table 1  Baseline characteristics of the study subjects with and without incident diabetes
Non-diabetes diabetes Standardized difference (%)

No of subjects 15,080 373
Sex 49 (39, 59)
  Women 6947 (46.07%) 87 (23.32%)
  Men 8133 (53.93%) 286 (76.68%)
Age, years 42.00 (37.00–50.00) 46.00 (41.00–53.00) 40 (30, 51)
Weight, kg 60.41 (11.48) 69.84 (13.32) 76 (66, 86)
Height, cm 1.65 (0.08) 1.67 (0.09) 1.68 19 (9, 29)
BMI, kg/m2 22.04 (3.07) 25.03 (3.82) 86 (76, 97)
WC, cm 76.25 (8.97) 85.08 (10.20) 92 (82, 102)
ALT, U/L 17.00 (13.00–23.00) 24.00 (18.00–39.00) 67 (56, 77)
AST, U/L 17.00 (14.00–21.00) 20.00 (16.00–26.00) 44 (34, 55)
GGT, U/L 15.00 (11.00–22.00) 24.00 (17.00–36.00) 47 (37, 58)
TC, mmol/L 5.12 (0.86) 5.43 (0.90) 35 (25, 46)
TG, mmol/L 0.72 (0.49–1.11) 1.21 (0.86–1.93) 73 (62, 83)
HDL-C, mmol/L 1.47 (0.40) 1.19 (0.33) 77 (66, 87)
LDL-CF, mmol/L 3.15 (2.63–3.69) 3.63 (3.09–4.14) 60 (50, 70)
LDL-CS, mmol/L 3.22 (2.70–3.79) 3.60 (3.08–4.20) 43 (33, 53)
Non-HDL-C, mmol/L 3.59 (3.00-4.23) 4.20 (3.57–4.82) 65 (55, 75)
RC, mmol/L 0.44 (0.36–0.53) 0.55 (0.46–0.67) 80 (70, 91)
TC/HDL-C ratio 3.50 (2.86–4.39) 4.71 (3.86–5.78) 87 (77, 97)
TG/HDL-C ratio 0.50 (0.30–0.89) 1.09 (0.64–1.93) 74 (63, 84)
LDL/HDL-C ratio 2.19 (1.64–2.96) 3.19 (2.50–4.11) 86 (75, 96)
Non-HDL/HDL-C ratio 2.50 (1.86–3.39) 3.71 (2.86–4.78) 87 (77, 97)
RC/HDL-C 0.30 (0.22–0.43) 0.48 (0.36–0.66) 88 (78, 98)
FPG, mmol/L 5.15 (0.41) 5.61 (0.36) 121 (111, 132)
HbA1c, % 5.16 (0.32) 5.53 (0.37) 107 (97, 118)
SBP, mmHg 114.31 (14.91) 122.03 (15.59) 51 (40, 61)
DBP, mmHg 71.44 (10.47) 77.18 (10.23) 55 (45, 66)
Habit of exercise 2655 (17.61%) 51 (13.67%) 11 (1, 21)
Fatty liver 2514 (16.67%) 223 (59.79%) 99 (89, 109)
Drinking status 21 (11, 31)
  no or little 11,536 (76.50%) 266 (71.31%)
  light 1714 (11.37%) 40 (10.72%)
  moderate 1320 (8.75%) 37 (9.92%)
  heavy 510 (3.38%) 30 (8.04%)
Smoking status 45 (35, 55)
  non 8882 (58.90%) 145 (38.87%)
  former 2872 (19.05%) 77 (20.64%)
  current 3326 (22.06%) 151 (40.48%)
Values were expressed as mean (SD) or medians (quartile interval) or n (%). Abbreviations: BMI: body mass index; WC: Waist circumference; ALT: alanine 
aminotransferase; AST: aspartate aminotransferase; GGT: gamma-glutamyl transferase; HDL-C: high-density lipoprotein cholesterol; TC: total cholesterol; TG: 
triglyceride; LDL-C: low density lipoprotein cholesterol; Non-HDL-C: non-high-density lipoprotein cholesterol; RC: remnant cholesterol; HbA1c: hemoglobin A1c; 
FPG: fasting plasma glucose; SBP: systolic blood pressure; DBP: Diastolic blood pressure
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liver, and blood pressure and glucose enzyme metabo-
lism factors, we observed that the associations between 
TC, LDL-CF, LDL-CS, and non-HDL-C with diabetes risk 
disappeared, which suggested that TC, LDL-CF, LDL-CS, 
and non-HDL-C may not be the mediating factors in the 
association of BMI with diabetes risk. Additionally, it’s 
important to note that among all lipid parameters, RC 
and lipid ratios such as RC/HDL-C exhibited the highest 
level of association with diabetes risk (RC: HR = 2.23; RC/
HDL-C ratio: HR = 2.67).

Relationship of BMI with lipid parameters
Table  4 presents the results of the correlation analysis 
of BMI with lipid parameters. In linear regression, after 
thorough adjustment for confounding factors, we found 
significant associations between all lipid parameters and 
BMI, and except for HDL-C which exhibited a nega-
tive correlation with BMI (β=-2.47), the rest of the lipid 
parameters showed significant positive correlations with 
BMI. Additionally, it’s worth mentioning that the asso-
ciation of TC/HDL-C ratio with BMI was the strongest 
(β = 4.19).

Mediating effect of lipid parameters on the association of 
BMI with incident diabetes
Based on the results of the correlation analysis men-
tioned above, we proceeded to conduct further mediation 
analysis. Table 5; Fig. 3 present the results of the media-
tion analysis of lipid parameters in the association of BMI 
with the risk of diabetes incidence. The results revealed 
that, excluding TC, LDL-CF, LDL-CS, non-HDL-C, and 
TyG index the remaining 8 lipid parameters mediated the 
association of BMI with diabetes, with RC/HDL-C ratio 
having the most significant impact and a mediation per-
centage of 40%. Furthermore, it’s worth noting that the 
non-HDL/HDL-C ratio, TC/HDL-C ratio, LDL/HDL-C 
ratio, and HDL-C also exhibited mediation percentages 
exceeding 30%, establishing them as robust mediators in 
the association of BMI with diabetes risk; interestingly, 
unconventional lipid parameters tended to display higher 
mediation percentages compared to conventional ones.

Area under the ROC curve, specificity, sensitivity, PPV, and 
NPV of BMI and BMI combined lipid parameters to predict 
incident diabetes
The results in Table 6 demonstrate that when combined 
with BMI, all lipid parameters resulted in higher AUC 
values compared to BMI alone. The combination of RC/
HDL-C ratio and BMI had the highest AUC value of 
0.7748. Moreover, the accuracy of identifying incident 
diabetes was significantly enhanced by incorporating 
BMI with all lipid parameters, except for TC + BMI (All 
DeLong test p < 0.05).

Table 2  Relationship between BMI and incident diabetes
HR (95%CI) P-value

Model 1 1.250 (1.215, 1.286) < 0.001
Model 2 1.153(1.115, 1.193) < 0.001
Model 3 1.096 (1.057, 1.135) < 0.001
Model 4 1.097 (1.059, 1.137) < 0.001
Model 5 1.093 (1.054, 1.133) < 0.001
Model 6 1.088(1.049, 1.128) < 0.001
Model 7 1.096(1.058, 1.136) < 0.001
Model 8 1.096 (1.057, 1.136) < 0.001
Model 9 1.093 (1.054, 1.133) < 0.001
Model 10 1.089 (1.050, 1.129) < 0.001
Model 11 1.091 (1.053, 1.131) < 0.001
Model 12 1.089 (1.051, 1.130) < 0.001
Model 13 1.089 (1.050, 1.129) < 0.001
Model 14 1.088 (1.049, 1.129) < 0.001
Abbreviations: HR: Hazard ratios; CI: confidence interval; other abbreviations as 
in Table ​1

Model 1 adjusted sex, age, height, SBP

Model 2 adjusted model 1 + Fatty liver, habit of exercise, smoking status and 
drinking status

Model 3 adjusted model 2 + ALT, AST, GGT, FPG and HbA1c

Model 4 adjusted model 3 + TC; Model 5 adjusted model 3 + TG; Model 6 
adjusted model 3 + HDL-C; Model 7 adjusted model 3 + LDL-C; Model 8 adjusted 
model 3 + Non-HDL-C; Model 9 adjusted model 3 + RC; Model 10 adjusted 
model 3 + TC/HDL-C ratio; Model 11 adjusted model 3 + TG/HDL-C ratio; Model 
12 adjusted model 3 + LDL/HDL-C ratio; Model 13 adjusted model 3 + non-HDL/
HDL-C ratio; Model 14 adjusted model 3 + RC/HDL-C ratio

Models 4–14 show the correlation between BMI and diabetes when lipid 
parameters are included in the regression model

Table 3  Relationship between lipid parameters and incident 
diabetes

HR (95%CI)
Model I Model II Model III

TC 1.29 (1.15, 1.45) 1.16 (1.03, 1.31) 0.94 (0.83, 1.07)
TG 1.61 (1.48, 1.75) 1.39 (1.25, 1.54) 1.22 (1.08, 1.37)
HDL-C 0.17 (0.12, 0.25) 0.37 (0.25, 0.54) 0.47 (0.32, 0.70)
LDL-CF 1.58 (1.40, 1.79) 1.29 (1.13, 1.49) 1.00 (0.87, 1.16)
LDL-CS 1.48 (1.34, 1.64) 1.23 (1.11, 1.27) 1.02 (0.91 1.14)
Non-HDL-C 1.55 (1.39, 1.72) 1.29 (1.14, 1.45) 1.02 (0.91, 1.16)
RC 34.45 (18.54, 

64.03)
9.11 (4.45, 18.66) 2.23 (1.05, 4.71)

TC/HDL-C ratio 1.53 (1.43, 1.64) 1.29 (1.20, 1.40) 1.15 (1.06, 1.25)
TG/HDL-C ratio 1.39 (1.32, 1.46) 1.29 (1.20, 1.39) 1.20 (1.10, 1.31)
LDL/HDL-C 
ratio

1.63 (1.51, 1.77) 1.34 (1.22, 1.47) 1.17 (1.06, 1.29)

Non-HDL/
HDL-C ratio

1.53 (1.43, 1.64) 1.29 (1.20, 1.40) 1.15 (1.06, 1.25)

RC/HDL-C ratio 11.45 (8.09, 
16.21)

5.12 (3.27, 8.02) 2.67 (1.64, 4.35)

Abbreviations: Hazard ratios; CI: confidence interval; other abbreviations as in 
Table 1

Model I adjusted sex, age, height, SBP

Model II adjusted model I + Fatty liver, habit of exercise, smoking status and 
drinking status

Model III adjusted model II + ALT, AST, GGT, FPG and HbA1c
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Discussion
In this study encompassing 15,453 participants, we iden-
tified that apart from TC, LDL-C, and non-HDL-C, lipid 
parameters including RC, HDL-C, TG, TG/HDL-C ratio, 
TC/HDL-C ratio, LDL/HDL-C ratio, non-HDL/HDL-C 
ratio and RC/HDL-C ratio played significant mediating 
roles in the association of BMI with diabetes risk. Among 
them, the RC/HDL-C ratio made the most substantial 
contribution to the association of BMI with diabetes risk, 
accounting for a substantial 40%. Furthermore, the non-
HDL/HDL-C ratio, LDL/HDL-C ratio, TC/HDL-C ratio 
and HDL-C exhibited significant mediation percentages 
as well, at 33.9%, 31.6%, 33.8% and 30.3%, respectively.

With the advancement of economies and shifts in 
lifestyle habits, the prevalence of diabetes is sweep-
ing across the globe at an alarming rate, with a notable 
trend towards affecting younger individuals with lower 

body weight [1, 2]. Abundant epidemiological evidence 
underscores that both BMI and lipid dysregulation are 
pivotal risk factors in the onset and progression of dia-
betes [5, 43, 44]. BMI, serving as a body measurement 
indicator reflecting overall obesity, is associated with 
an elevated risk of diabetes and demonstrates a dose-
response relationship; in comparison to other obesity 
indices, BMI might be the optimal predictor of diabetes 
risk [8, 11, 45, 46]. The investigation of lipid parameters 
in relation to the risk of diabetes has emerged as a recent 
research focus, particularly concerning composite lipid 
parameters [27, 30, 31, 47, 48]. In the present analysis, 
we assessed the associations between 11 lipid parameters 
and diabetes, and the findings revealed that a majority of 
lipid parameters were closely linked to the risk of diabe-
tes, with the RC/HDL-C ratio displaying the strongest 
association with diabetes incidence risk. Building upon 

Table 4  Association of BMI with lipid parameters
β (95%CI)
Model I Model II Model III

TC 1.78 (1.59, 1.96) 1.13 (0.96, 1.31) 0.79 (0.62, 0.97)
TG 1.47 (1.40, 1.55) 0.97 (0.89, 1.04) 0.81 (0.74, 0.88)
HDL-C -3.51 (-3.68, -3.35) -2.63 (-2.79, -2.47) -2.47 (-2.63, -2.32)
LDL-CF 2.24 (2.11, 2.36) 1.60 (1.48, 1.72) 1.36 (1.24, 1.48)
LDL-CS 1.47 (1.37, 1.56) 1.08 (0.99, 1.71) 0.91 (0.82, 1.00)
Non-HDL-C 2.22 (2.10, 2.34) 1.58 (1.46, 1.69) 1.34 (1.23, 1.45)
RC 3.45 (3.29, 3.61) 2.40 (2.24, 2.55) 2.06 (1.90, 2.21)
TC/HDL-C ratio 6.04 (5.81, 6.27) 4.63 (4.40, 4.86) 4.19 (3.96, 4.42)
TG/HDL-C ratio 1.33 (1.27, 1.38) 0.94 (0.88, 1.00) 0.83 (0.77, 0.89)
LDL/HDL-C ratio 2.60 (2.50, 2.70) 2.00 (1.90, 2.10) 1.81 (1.71, 1.91)
Non-HDL/HDL-C ratio 2.62 (2.52, 2.72) 2.01 (1.91, 2.11) 1.82 (1.72, 1.92)
RC/HDL-C ratio 2.26 (2.17, 2.34) 1.71 (1.62, 1.79) 1.54 (1.46, 1.63)
Abbreviations: β : regression coefficient; CI: confidence interval; other abbreviations as in Table 1

Model I adjusted sex, age, height, SBP

Model II adjusted model I + Fatty liver, habit of exercise, smoking status and drinking status

Model III adjusted model II + ALT, AST, GGT, FPG and HbA1c

Table 5  Mediation analysis for BMI and incident diabetes via lipid parameters in the whole population
Mediator Total effect Mediation effect Direct effect PM(%) p-value of PM
TC 0.008 (0.004, 0.012) -0.000 (-0.001, -0.000) 0.008 (0.004, 0.012) - -
TG 0.008 (0.004, 0.012) 0.001 (0.001, 0.002) 0.006 (0.003, 0.011) 16.9 < 0.001
HDL-C 0.008 (0.004, 0.012) 0.002 (0.001, 0.003) 0.005 (0.002, 0.009) 30.3 < 0.001
LDL-CF 0.008 (0.004, 0.012) -0.000 (-0.001, 0.000) 0.008 (0.004, 0.012) - -
LDL-CS 0.008 (0.003, 0.013) -0.001 (-0.001, 0.000) 0.009 (0.003, 0.014) - -
Non-HDL-C 0.008 (0.004, 0.012) -0.000 (-0.001, 0.000) 0.008 (0.004, 0.012) - -
RC 0.008 (0.004, 0.012) 0.001 (0.000, 0.002) 0.007 (0.003, 0.011) 10.4 0.022
TC/HDL-C ratio 0.008 (0.004, 0.012) 0.003 (0.002, 0.004) 0.005 (0.001, 0.009) 33.8 < 0.001
TG/HDL-C ratio 0.008 (0.004, 0.012) 0.002 (0.002, 0.003) 0.006 (0.002, 0.010) 26.7 < 0.001
LDL/HDL-C ratio 0.008 (0.004, 0.012) 0.002 (0.001, 0.003) 0.005 (0.001, 0.009) 31.6 < 0.001
Non-HDL/HDL-C ratio 0.008 (0.004, 0.012) 0.003 (0.002, 0.004) 0.005 (0.001, 0.009) 33.9 < 0.001
RC/HDL-C ratio 0.008 (0.004, 0.012) 0.003 (0.002, 0.004) 0.005 (0.001, 0.009) 40 < 0.001
TyG index 0.008 (0.003, 0.013) 0.001 (-0.001, 0.001) 0.007 (0.002, 0.012) - -
Abbreviations: PM: proportion mediate; other abbreviations as in Table ​1

Adjusting variables: sex, age, height, SBP, Fatty liver, habit of exercise, smoking status, drinking status, ALT, AST, GGT, FPG and HbA1c
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Table 6  Area under the ROC curve, Specificity, Sensitivity, PPV, and NPV of BMI and BMI combined lipid parameters to predict incident 
diabetes

AUC 95%CI low 95%CI upp Specificity Sensitivity PPV NPV
BMI 0.7327 0.7069 0.7586 0.7184 0.6273 0.0522 0.9873
TC + BMI 0.7369 0.7111 0.7627 0.7471 0.6086 0.0562 0.9872
TG + BMI* 0.7655 0.7406 0.7904 0.7438 0.6273 0.0605 0.9891
HDL-C + BMI* 0.7631 0.7388 0.7874 0.6977 0.7131 0.0522 0.0551
LDL-CF+ BMI* 0.7468 0.7271 0.7719 0.7164 0.6702 0.0522 0.9877
LDL-CS+ BMI* 0.7378 0.7124 0.7632 0.6758 0.6836 0.0496 0.9886
Non-HDL-C + BMI* 0.7503 0.7254 0.7753 0.7192 0.6729 0.0560 0.9889
RC + BMI* 0.7655 0.7409 0.7901 0.7186 0.6997 0.0579 2.3902
TC/HDL-C ratio + BMI* 0.7705 0.7468 0.7943 0.7737 0.6354 0.0649 0.9885
TG/HDL-C ratio + BMI* 0.7666 0.7418 0.7915 0.6740 0.7319 0.0526 0.9903
LDL/HDL-C ratio + BMI* 0.7688 0.7450 0.7925 0.7729 0.6273 0.0640 0.9882
Non-HDL/HDL-C ratio + BMI* 0.7705 0.7486 0.7943 0.7737 0.6354 0.0649 0.9885
RC/HDL-C ratio + BMI* 0.7748 0.7509 0.7987 0.8133 0.6086 0.0746 0.9883
ROC, receiver-operating characteristic curve; AUC, area under the ROC curve; PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval; 
Other abbreviations as in Table 1; *, DeLong test, P < 0.05 compared with BMI

Fig. 3  Lipid parameters mediation models of the relationship between BMI and incident diabetes. ME: Mediation effect; DE: Direct effect; BMI: Body mass 
index
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this, our subsequent mediation analysis revealed that 
the RC/HDL-C ratio serves as the most robust mediat-
ing factor in the association of BMI with diabetes risk. It 
is worth noting that the current study did not find sig-
nificant associations between TC, LDL-C, and non-HDL-
C with diabetes risk, which aligned with some previous 
reports [48–51]. However, it should be mentioned that 
certain studies have also indicated that TC, LDL-C, and 
non-HDL-C can indeed reflect diabetes risk [52, 53]. Fur-
ther research is required to elucidate the discrepancies 
in these study outcomes. In the context of this study, the 
lack of significant mediation effects of TC, LDL-C, and 
non-HDL-C in the association of BMI with diabetes risk 
might largely stem from the absence of an underlying 
link between TC, LDL-C, and non-HDL-C and diabetes 
risk, as this did not align with the prerequisite for media-
tion analysis. Notably, HDL-C and HDL-C-related ratio 
parameters play a very strong mediating role in BMI-
related diabetes risk. In pathological states such as obe-
sity and diabetes, HDL-C function and composition are 
remodeled, mainly in the form of increased serum glyco-
sylated proteins and oxidized HDL, which in turn reduces 
the antioxidant and anti-inflammatory effects of HDL 
[54, 55]. Taken together with the current study results, 
HDL-C may be the most single important lipid param-
eter in BMI-associated diabetes risk.To our knowledge, 
this is the first study to dissect the intricate relationship 
of BMI, lipid parameters, with diabetes risk. The current 
study demonstrated that the majority of lipid parameters 
were involved in mediating the association of BMI with 
the risk of diabetes. Regarding the mechanisms through 
which lipid parameters mediated the association of BMI 
with diabetes, several findings based on fundamental 
research might offer partial explanations: Generally, as 
BMI increases, serum-free fatty acids tend to rise [56], 
and tissues like the liver, skeletal muscle, and pancreas 
accelerate the uptake and utilization of free fatty acids. 
However, when these tissues reach a compensatory limit 
in their uptake and utilization of fatty acids, excess lipids 
accumulate within cells. On one hand, this lipid toxicity 
exacerbates lipid accumulation in β-cells, ultimately lead-
ing to β-cell apoptosis [44]; on the other hand, excessive 
lipid accumulation induces secondary IR in tissues like 
the liver and skeletal muscle [57], ultimately culminat-
ing in diabetes development. Indeed, the inflammatory 
response in adipose tissue is also noteworthy. When fatty 
acid uptake by adipocytes increases, white adipose tis-
sue secretes tumor necrosis factor-alpha (TNF-α), which, 
through intracellular and extracellular cascades, activates 
the NF-κB pathway, leading to oxidative stress in adipose 
tissue, inflammation in β-cells, and hindrance of insulin 
signal transduction, thereby exacerbating IR [57–60]. 
Furthermore, TNF-α inhibits the expression of the ADI-
POQ gene, lowering serum adiponectin levels, which in 

turn weakens the oxidation process of free fatty acids in 
skeletal muscle and liver, leading to elevated serum free 
fatty acid concentrations and exacerbating metabolic dis-
turbances in lipid metabolism [61, 62]. Simultaneously, 
the significant role of adiponectin in exerting anti-apop-
totic effects on β-cells should not be overlooked [63]; 
decreased adiponectin levels could substantially increase 
the risk of diabetes. Hence, lipid toxicity, inflammation, 
and IR likely constitute vital pathological pathways that 
link lipid parameters with BMI-related diabetes risk.

The present study assessed the mediating role of lipid 
parameters in the association of BMI with diabetes risk, 
further ROC analyses showed that lipid parameters 
combined with HDL-C were significantly improved not 
only in predicting incident diabetes but also in mediat-
ing BMI-related diabetes risk. It is noteworthy that in the 
current analysis, we identified the RC/HDL-C ratio as 
the most valuable lipid parameter for assessing diabetes 
risk and mediating the association of BMI with diabetes 
risk; therefore, we recommend placing emphasis on the 
simple yet efficient indicator of RC/HDL-C ratio in dia-
betes risk screening. Additionally, based on the results 
of the mediation analysis, it’s essential to emphasize that 
incorporating lipid levels into the management of diabe-
tes risk, alongside weight management, could be an effec-
tive measure to reduce the incidence of diabetes. Existing 
evidence also suggested that addressing a single risk fac-
tor may prove inadequate for achieving favorable clinical 
outcomes in the context of complex metabolic disorders 
[63–66]. Therefore, implementing multifactorial man-
agement targeting the risk factors for diabetes could be a 
more effective approach, and this viewpoint is supported 
by a range of completed and ongoing clinical studies. 
Previous studies have shown that intensive interventions 
targeting multiple factors, including blood glucose, lipid 
levels, and blood pressure, among high-risk individuals, 
have resulted in a significant reduction in the risk of dia-
betes and related complications [66–69]. Among them, 
the Steno-2 cohort study demonstrated that for diabetic 
patients, the importance of controlling blood lipids might 
even surpass that of controlling blood glucose [69], which 
underscored the significance of lipid interventions in 
comprehensive, multifactorial management of diabetes. 
Dietary intervention is also a crucial measure in compre-
hensive diabetes management. Researches indicated that 
daily intake of 15–35 g of fiber-rich foods and consump-
tion of polyunsaturated fatty acids (omega-3 fatty acids) 
can significantly improve blood glucose and lipid metab-
olism in diabetic patients and high-risk individuals, while 
also aiding in weight reduction [70, 71]. These findings 
offer valuable insights for diabetes prevention and man-
agement. Monitoring diabetes risk factors and relying on 
metabolic control to reduce diabetes risk and incidence 
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rates might be a more efficient approach to curbing the 
diabetes epidemic.

Study strengths and limitations
Our strength lies in quantifying the effects of 8 lipid 
parameters in the association of BMI with diabetes risk 
through mediation analysis, thus introducing novel per-
spectives into the biological mechanisms underlying the 
link between BMI and diabetes risk. Furthermore, these 
newfound discoveries offer fresh evidence and view-
points for diabetes prevention and management, holding 
significant clinical implications.

Similarly, there are certain limitations of our study that 
should be acknowledged. (1) Our study found that lipid 
parameters only partially mediated the association of 
BMI with diabetes risk, indicating the existence of several 
unknown potential mediators that necessitate further 
research for exploration; furthermore, the specific mech-
anisms by which lipid parameters mediate the association 
of BMI with diabetes risk also require additional foun-
dational research for validation. (2) Despite controlling 
for multiple covariates during our study, there remain 
unmeasured confounding factors that could potentially 
lead to residual confounding. (3) Some studies have indi-
cated that the use of lipid-lowering drugs (statins) might 
increase the risk of diabetes [72], and they can also influ-
ence cholesterol and lipid metabolism. However, since 
the original study excluded subjects using such medica-
tions [22], we couldn’t assess the impact of lipid-lowering 
drugs on our study results and hope that future research 
could address this issue. (4) As our participants were 
solely drawn from the general population in Japan, fur-
ther validation is required to assess the applicability of 
the current study’s findings to other ethnic groups.

Conclusion
This study discovered that the majority of lipid param-
eters mediated the association of BMI with diabetes risk. 
It is noteworthy that the impact of the RC/HDL-C ratio 
was the most significant, mediating 40% of the BMI-
related diabetes risk. These findings offered new insights 
into the prevention and treatment of diabetes, and focus-
ing on HDL-C and HDL-C-related lipid ratio parameters 
may be an essential measure in the comprehensive man-
agement of BMI-related diabetes.
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