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Abstract 

Background  Hyperglycemic crises are associated with high morbidity and mortality. Previous studies have pro‑
posed methods to predict adverse outcomes of patients in hyperglycemic crises; however, artificial intelligence (AI) 
has never been used to predict adverse outcomes. We implemented an AI model integrated with the hospital infor‑
mation system (HIS) to clarify whether AI could predict adverse outcomes.

Methods  We included 2,666 patients with hyperglycemic crises from emergency departments (ED) between 2009 
and 2018. The patients were randomized into a 70%/30% split for AI model training and testing. Twenty-two feature 
variables from the electronic medical records were collected. The performance of the multilayer perceptron (MLP), 
logistic regression, random forest, Light Gradient Boosting Machine (LightGBM), support vector machine (SVM), 
and K-nearest neighbor (KNN) algorithms was compared. We selected the best algorithm to construct an AI model 
to predict sepsis or septic shock, intensive care unit (ICU) admission, and all-cause mortality within 1 month. The 
outcomes between the non-AI and AI groups were compared after implementing the HIS and predicting the hyper‑
glycemic crisis death (PHD) score.

Results  The MLP had the best performance in predicting the three adverse outcomes, compared with the random 
forest, logistic regression, SVM, KNN, and LightGBM models. The areas under the curves (AUCs) using the MLP model 
were 0.852 for sepsis or septic shock, 0.743 for ICU admission, and 0.796 for all-cause mortality. Furthermore, we 
integrated the AI predictive model with the HIS to assist decision making in real time. No significant differences in ICU 
admission or all-cause mortality were detected between the non-AI and AI groups. The AI model performed better 
than the PHD score for predicting all-cause mortality (AUC 0.796 vs. 0.693).

Conclusions  A real-time AI predictive model is a promising method for predicting adverse outcomes in ED patients 
with hyperglycemic crises. Further studies recruiting more patients are warranted.
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Background
Diabetic ketoacidosis (DKA) and hyperosmolar hypergly-
cemic state (HHS) are severe acute complications of dia-
betes [1]. Precipitating factors include uncontrolled type 
1 and 2 diabetes, infection, new-onset diabetes, pancrea-
titis, acute coronary syndrome, stroke, and medications 
[2, 3]. Visits to the emergency department (ED) for DKA 
and HHS have been increasing annually in the United 
States. In 2015, there were 3.1 visits for DKA and 2.9 vis-
its for HHS per 10,000 adults with diabetes [1]. Although 
treatment includes hydration, insulin therapy, and elec-
trolyte replacement, the mortality rate for hyperglycemic 
crises remains high [4, 5] and can also increase the risk 
for subsequent adverse cardiovascular events, end-stage 
renal disease, and long-term mortality [6–8]. Risk strati-
fication (e.g., sepsis, intensive care unit [ICU] admission, 
and mortality) may improve outcomes in hyperglycemic 
crises [2, 3]. Prior studies identified mortality predictors, 
such as age, mental status, severe coexisting diseases, 
serum pH < 7.0, high insulin dose within the first 12  h, 
and serum glucose > 16.7 mmol after 12 h [4, 5, 8], but a 
clinical prediction rule may be more practical.

In 2013, the predicting the hyperglycemic crisis death 
(PHD) score was proposed as a tool to help ED physicians 
stratify the mortality risk and make decisions regarding 
patients in hyperglycemic crises [7]. It consists of six pre-
dictors and stratifies patients into low, intermediate, and 
high-risk groups. While the area under the curve (AUC) 
for the rule was 0.925 in the validation set, the PHD score 
was limited by a small derivation sample and manual cal-
culation [7]. In recent years, artificial intelligence (AI) 
techniques have become a promising method to assist in 
medical decisions, and several AI predictions for adverse 
outcomes have been implemented in ED [6, 9–11]. How-
ever, no study has yet evaluated the feasibility and accu-
racy of AI predictions of adverse outcomes in ED patients 
with hyperglycemic crises in real time [12, 13]. Therefore, 
we carried out this study to clarify it.

Methods
Study design, setting, and participants
We established a multi-disciplinary team at the Chi Mei 
Medical Center (CMMC), including emergency physi-
cians, data scientists, information engineers, nurse prac-
titioners, and quality managers to implement big data 
and AI. Adults (age ≥ 20 years) with hyperglycemic crises 
who visited the EDs of three hospitals (CMMC, Chi Mei 
Liouying Hospital, and Chi Mei Chiali Hospital) between 
2009 and 2018 were recruited (Fig. 1). The rationale that 
we used to select patients aged ≥ 20  years is that a cri-
terion for an adult in Taiwan is “ ≥ 20  years”, and it has 
been adopted in many studies [6, 11]. The criteria for 

hyperglycemic crises were defined as the final diagnosis 
of DKA or HHS in the ED, using the International Clas-
sification of Diseases, Ninth Revision, Clinical Modifica-
tion (ICD-9-CM) codes 250.1 or 250.2 and ICD-10 codes 
E11.1 or E11.0. Patients who did not have a record of sub-
sequent follow-up and those who visited the ED for mul-
tiple hyperglycemic crises were excluded.

Definition of feature variables
The 22 feature variables retained for analysis were age, 
sex, body mass index (BMI), vital signs at triage (Glas-
gow Coma Scale [GCS], systolic blood pressure, heart 
rate, respiratory rate, and body temperature), bedridden, 
nasogastric tube feeding, history of hypertension (ICD-
9-CM: 401–405 or ICD-10: I10–I16), hyperlipidemia 
(ICD-9-CM: 272.0–272.5, 277.7 or ICD-10: E78.0–E78.5, 
E88.81), malignancy (ICD-9-CM: 140–208 or ICD-10: 
C00–C69), chronic kidney disease (ICD-9-CM: 585 
or ICD-10: N18), and laboratory data, including blood 
urea nitrogen, serum creatinine, white blood cell count, 
hemoglobin, glucose, and high sensitive C-reactive pro-
tein (hs-CRP), as well as concomitant infection (ICD-
9-CM: 001–139, 320–326, 390–392, 480–488, 540–543, 
555–558, 566–567, 599.0, 601, 604, 614–616, 680–686, 
730 or ICD-10: A00–B99, G00–G09, I00–I02, J09–J18, 
K35–K38, K50–K52, K61, K65, N39.0, N41, N45, N70–
N77, L00–L08, M86, R65). The feature variables were 
suggested predictors of adverse outcomes in previous 
studies, and possible risk factors for adverse outcomes in 
clinical practice [7, 14–17]. History was pre-existing at 
the time of presentation as diagnosed by the physician in 
the electronic medical records (EMRs). Age was divided 
into four subgroups of 20–34, 35–49, 50–64, 64–74, 
and ≥ 75  years according to previous studies [6, 11, 18]. 
BMI was divided into four subgroups according to the 
Asian BMI levels: < 18.5, 18.5–22.9, 23–24.9, and ≥ 25 kg/
m2 [19, 20].

Outcome measurements
We defined three adverse outcomes, including sepsis or 
septic shock < 1  month (ICD-9-CM: 038, 790.7 or ICD-
10: A40–A41, R65, R7881), ICU admission < 1  month, 
and all-cause mortality < 1  month following the time of 
presentation in the ED. The general “ICU admission” cri-
teria in the study hospital were unstable vital signs and 
the need for intensive monitoring and treatment. “All-
cause mortality” was defined as a record of death certifi-
cation or discharge against medical advice in a patient in 
critical condition in the EMRs. We defined “ < 1 month” 
for outcomes according to previous studies of hypergly-
cemic crises and AI [7, 11].
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Ethical statement
This study was approved by the Institutional Review 
Board of the CMMC and was conducted according to 
the Declaration of Helsinki. Informed consent from the 
patients was waived because this study was retrospective 
and contained de-identified information, which did not 
affect the rights or welfare of the patients.

Data processing, comparison, and application
The study had two phases: pre- and post-implementation. 
The pre-implementation phase developed an AI pre-
dictive model and integrated it with the HIS. The post-
implementation phase compared outcomes between 
the non-AI and AI groups. The feature of sex was trans-
formed into 1 (male) or 0 (female). Missing or ambigu-
ous data were defined by a team comprising emergency 
physicians, data scientists, information engineers, nurse 
practitioners, and quality managers. Data with miss-
ing feature variables were deleted or estimated with an 
average value. Second, we divided the data into training 

(70%) and test (30%) datasets according to previous stud-
ies [6, 11, 21]. There were fewer outcomes, particularly 
ICU admissions, which may have caused an imbalance 
in the data. Therefore, we used the synthetic minority 
over-sampling technique to improve the data imbalance 
in the training dataset [22]. Machine learning (ML) and 
deep learning (DL) are the two major fields of AI [23]. 
ML, including random forest, logistic regression, sup-
port vector machine (SVM), K-nearest neighbor (KNN), 
and Light Gradient Boosting Machine (LightGBM), is 
the ability that a computer system uses to automati-
cally improve their function or to “learn” with continu-
ous data [23]. DL, as the multilayer perceptron (MLP) in 
this study, has a more complex network of nodes between 
the inputs and outputs for solving complex problems 
more accurately [23]. Because the case number was 
small, we used MLP, a classical neural network method, 
to represent the DL method. The MLP has been adopted 
successfully in our studies [6, 9, 11, 24, 25]. We used 
fivefold cross validation technique to build all models. 

Fig. 1  Study flow chart. CMMC, Chi Mei Medical Center; ED, emergency department; AI, artificial intelligence; HIS, hospital information system
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We compared the ML algorithms, including random 
forest, logistic regression, SVM, KNN, LightGBM, and 
MLP for accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV), F1, 
and AUC. Accuracy was defined as the fraction of cases 
that the model correctly predicted [26]. Sensitivity was 
the fraction of positive cases predicted as positive [26]. 
Specificity was the fraction of negative cases predicted 
as negative [26]. PPV was the fraction of true positive 
cases from all cases that the model predicted to be posi-
tive [26]. NPV was the fraction of negative cases from 
all cases that the model predicted to be negative [26]. 
F1 was the harmonic mean of PPV and sensitivity [26]. 
Accuracy, PPV, NPV, and F1 depend on the prevalence 
of adverse outcomes [26]. We used the AUC to deter-
mine the best model for further implementation [13–15] 
because the AUC considers the predictive performance 
of the positive and negative outcomes. An AUC of 0.5 
suggests no discrimination, 0.7–0.8 suggests acceptable, 
0.8–0.9 suggests excellent, and > 0.9 suggests outstanding 
[26]. The tuning parameters we used to refine our mod-
els are shown in Supplementary Table 1. We performed 
the DeLong test to assess overfitting of the training and 
test models and plotted the learning curves for our model 
(best model) [27]. The p-value of the DeLong test for the 
best model (MLP model) was > 0.05, indicating no sig-
nificant difference between the training and test models. 
Therefore, no significant overfitting existed. Using the 
learning curve [28] (Supplementary Fig. 1), we observed 
no significant overfitting as the number of samples 
increased, with the training score (F1 score) curve gradu-
ally approaching and overlapping the testing score curve. 
Subsequently, we integrated the AI predictive model into 
the HIS, deployed it at the AI web service, and launched 
it for real-time decision-making assistance by ED physi-
cians. To reveal the real-time prediction result, a physi-
cian simply needed to press the AI button set up in the 
HIS. We then conducted a retrospective impact study 
between December 1, 2019, and April 30, 2021, in which 
all ED patients with hyperglycemic crises were identified 
and divided into non-AI and AI groups to compare out-
comes. The use of AI was an aid to decision-making and 
depended on the physician’s discretion.

ML algorithms used in this study
MLP is an artificial neural network that maps input 
data to appropriate outputs using an input layer, hidden 
layer, and output layer, each connected by a synaptic 
weight matrix and with nonlinear activation functions 
and trained via backpropagation [29]. Its multiple lay-
ers and activation functions enable it to distinguish 

non-linearly separable data [29]. In a study predicting 
adverse outcomes from pneumonia, MLP had AUCs of 
0.749, 0.792, and 0.802 for sepsis or septic shock, res-
piratory failure, and mortality, respectively [6].

Random forest is an efficient ensemble technique that 
contains multiple decision trees generated from com-
bined optimization decision trees, useful for classifi-
cation and regression, and preventing overfitting with 
high accuracy even for incomplete datasets [30]. Ran-
dom forest has been widely used in AI medical studies 
for prediction [31], including a study of predicting out-
comes in older ED patients with influenza, where their 
random forest model achieved an AUC of 0.840 for 
hospitalization, 0.765 for pneumonia, 0.857 for sepsis 
or septic shock, 0.885 for ICU admission, and 0.875 for 
in-hospital mortality [9].

Logistic regression is a statistical approach and 
supervised ML algorithm used for classification prob-
lems by mapping features to categorical targets and 
predicting the probability of a new case belonging to a 
target class [32]. In a recent study of predicting major 
adverse cardiac events in ED patients with chest pain, 
logistic regression was used to achieve AUCs of 0.868 
for acute myocardial infarction at < 1 month and 0.716 
for all-cause mortality at < 1 month [11].

LightGBM is a high-performing gradient boosting 
framework that utilizes tree-based learning algorithms 
and includes Gradient-based One-Side Sampling and 
Exclusive Feature Bundling methods for selective sam-
pling and reduced dimensionality [33]. A study using 
LightGBM as an algorithm reported AUCs of 0.774 for 
sepsis or septic shock, 0.847 for respiratory failure, and 
0.835 for mortality prediction [6].

SVM is a versatile algorithm that can address regres-
sion, binary, and multi-class classification problems by 
identifying a hyperplane that maximizes the distance 
between classes in the feature space [34]. In cases where 
the classes are not linearly separable, the kernel trick is 
used to project the feature vectors to a higher-dimen-
sional space [34]. SVM is widely used in medicine, with 
a study reporting AUCs of 0.840 for hospitalization, 
0.733 for pneumonia, 0.806 for sepsis or septic shock, 
0.778 for ICU admission, and 0.762 for in-hospital 
mortality in older patients with influenza [9].

KNN is a non-parametric, supervised learning clas-
sifier that predicts the grouping of an individual data 
point using proximity to other data points [35]. A study 
using KNN to predict major adverse cardiac events in 
ED patients with chest pain reported AUCs for acute 
myocardial infarction at < 1  month and all-cause mor-
tality at < 1 month of 0.865 and 0.969, respectively [11].
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Results
A total of 2,666 ED patients with hyperglycemic cri-
ses were recruited into the study at the three hospitals 
between 2009 and 2018 (Table  1). Their mean age was 
65.3 ± 16.9  years, and the percentage of females was 
45.7%. The four age subgroups were 20–34 years (5.8%), 
35–49  years (11.9%), 50–64  years (25.8%), 65–74  years 
(20.2%), and ≥ 75  years (36.3%). The mean BMI was 
23.0 ± 4.8 kg/m2. There were 60.2% of bedridden patients 
and 8.0% of patients being fed by nasogastric tube. A his-
tory of hypertension (53.0%), hyperlipidemia (26.2%), 
cerebrovascular accident (29.8%), malignancy (14.2%), 
and chronic kidney disease (11.4%) were found. Concom-
itant infection was found in 46.8% of the patients. Within 
1  month, 31.7% of patients had sepsis or septic shock, 
6.0% required ICU admission, and 12.8% died. Missing 
data were assigned values according to decisions made 
at a multi-disciplinary team meeting (Supplementary 
Table 2).

The MLP model outperformed other algorithms 
with AUCs of 0.852 for sepsis or septic shock, 0.743 
for ICU admission, and 0.796 for all-cause mortality in 
the testing dataset (Table 2 and Supplementary Fig. 2) 
[36]. After a consensus was reached, MLP was chosen 
for AI implementation. SHapley Additive exPlanations 
(SHAP) values were used to identify feature associa-
tions and importance (Supplementary Fig. 3). A model 
was developed for predicting ICU admissions < 48  h 
with an AUC of 0.780 in the test dataset, outperform-
ing other algorithms. A DeLong test was used to com-
pare AUC values between algorithms (Supplementary 
Table 4).

Meanwhile, it is crucial for models to be well calibrated 
when used in real-world patient-level scenarios, as inac-
curacies in individual predicted probabilities may lead 
to inappropriate decisions by physicians. To assess the 
calibration of our models, we generated calibration plots 
that depict the distribution of observed and predicted 
case states across absolute probability subgroups or bins. 
A calibration curve that closely aligns with the diagonal 
indicates a higher level of calibration for the correspond-
ing model. Our evaluation, as demonstrated in Figs. 2, 3 
and 4, reveals that the calibration guideline for all MLP 
models was not significantly violated. Therefore, these 
models can be considered suitable for implementing a 
prediction system.

The HIS of the ED had an AI button (Supplementary 
Fig. 4) that displayed the prediction within 1 s after being 
pressed by the clinician (Supplementary Fig. 5). AI pre-
dictions were personalized and presented as percentages, 
with risks categorized as low (0%–33%), moderate (33%–
66%), or high (66%–100%).

Patients with hyperglycemic crises (n = 271) between 
December 1, 2019 and April 30, 2021 were identified 
to compare the adverse outcomes between the non-AI 
and AI groups (Table  3). The AI group tended to have 
a lower ICU admission rate (11.1% vs. 19.8%) and all-
cause mortality (11.1% vs. 15.0%) than the non-AI 
group; however, the differences were not significant. 
In addition, we used the same data to validate the PHD 
score and found that the AI model using MLP for pre-
dicting all-cause mortality performed better than the 
PHD score (Table 4).

Discussion
We developed an AI prediction model using MLP for 
ED patients with hyperglycemic crises that provided 
real-time decision-making assistance to physicians. The 
AUC of the model was 0.852 for sepsis or septic shock, 
0.743 for ICU admissions, and 0.796 for all-cause mortal-
ity within 1 month. The impact study showed that the AI 
group tended to have lower ICU admissions and all-cause 
mortality than the non-AI group, but the differences 
were not significant.

Clinical decision rules (CDRs) like the PHD score can 
help with critical decision-making regarding patient 
health [37–39], but they have limitations. CDRs are 
designed to simplify complexity, and they should be 
externally validated in diverse settings to ensure appli-
cability [37, 38]. They may not be applicable to a user’s 
clinical setting or a targeted population, and they require 
manual calculation, which can be inconvenient in a busy 
ED [37, 38].

AI is a breakthrough in healthcare that has the poten-
tial to improve the system. MLP, a significant model in 
the artificial neural network, is preferred for solving 
nonlinear problems. It consists of the input, hidden, 
and output layers and mimics the human brain [40]. 
Unlike other computerized tools, AI learns, tests, and 
generates autonomously by analyzing big data [23, 41]. 
AI offers various opportunities for ED care, includ-
ing image interpretation, predicting patient outcomes, 
monitoring vital signs, reducing documentation burden 
with natural-language-processing, home monitoring 
systems, and outbreak prediction tools [41–44].

We integrated an AI prediction model into the HIS, 
which overcame barriers between AI research and 
clinical practice, but there were implementation barri-
ers. Hospital policies and cooperation from the hospi-
tal information department were crucial for successful 
implementation. Additionally, incorporating AI into the 
HIS was technically challenging and may require over-
hauling existing information technology systems. Finally, 
concerns regarding malpractice, accuracy, and physician 
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Fig. 2  Calibration plot: predicted and true probability results for sepsis and septic shock

Fig. 3  Calibration plot: predicted and true probability results for ICU admission. ICU, intensive care unit
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replacement by AI may affect physician acceptance of AI 
implementation [23].

Based on the same dataset, the AUC of all-cause mor-
tality of the best model in our study was superior to that 
of the PHD score (0.796 vs. 0.693), suggesting that our AI 
model may be a better tool for predicting adverse out-
comes in ED patients with hyperglycemic crises than the 
conventional PHD score.

We used the AUC, a recognized and comprehensive 
metric, to select the algorithm for our study [6, 9–11]. 
A major advantage of AUC is that it measures the rank-
ing of predictions, rather than their absolute values, 
and is classification-threshold-invariant [45]. However, 
the choice of metric depends on the study’s aim [10]. 
For instance, if high sensitivity to predict sepsis or sep-
tic shock was the aim, we may have chosen LightGBM 
since it had the best sensitivity of 0.803 in our study.

We used the SHAP value, a new method to increase 
the transparency of AI prediction, to identify the 
importance of each feature variable for determining 
adverse outcomes [36]. In the SHAP summary plot, red 
and blue indicate high and low associations, respec-
tively, between the feature variable and an adverse out-
come [36].

The study implemented a real-time AI prediction 
model integrated in the HIS to predict adverse out-
comes in ED patients with hyperglycemic crises, which 
was a major strength. However, there were some limi-
tations. The AUC for predicting ICU admission was 
lower than that for sepsis or septic shock and all-cause 
mortality, possibly due to the subjective nature of ICU 
admission decision-making [46]. The results of the 
DeLong test (Table  2) indicate that, except for MLP 
models, there is a potential for overfitting in most 
models, which should be approached with caution. It 
is worth considering increasing the size of the data to 
potentially mitigate this issue and improve the perfor-
mance of the models. The “black box” phenomenon 
remained a problem [23], but using the SHAP value 
may help increase transparency [36]. The impact of 
AI prediction on clinical practice was not fully evalu-
ated, and further studies are needed. The AI predic-
tion model may not be generalizable to other hospitals, 
and ethical and legislative issues may arise from using 
AI predictions as a tool. There were also limitations in 
the ICD measures [47, 48]. Lastly, the sample size of 
new patients was small, warranting more patients to be 
recruited to delineate this issue.

Fig. 4  Calibration plot: predicted and true probability results for all-cause mortality
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Table 3  Comparison of clinical characteristics and adverse outcomes between the non-AI and AI groups in new ED patients with 
hyperglycemic crises between December 1, 2019 and April 30, 2021

Variable Overall
n = 271

Non-AI
n = 253

AI
n = 18

p-value

Age (years) 69.6 ± 16.6 70.0 ± 16.8 64.4 ± 13.5 0.113

Age subgroup (%) 0.090*

  20 − 34 4.4 4.7 0

  35 − 49 8.1 7.5 16.7

  50 − 64 18.8 17.8 33.3

  65 − 74 21.4 20.9 27.8

   ≥ 75 47.2 49.0 22.2

Sex (%)

  Female 45.0 45.8 33.3 0.432

  Male 55.0 54.2 66.7

Body mass index (kg/m2) 22.7 ± 4.6 22.7 ± 4.6 22.9 ± 4.7 0.849

Asian BMI level subgroup (%)

   < 18.5 15.9 15.0 27.8 0.267

  18.5 − 22.9 41.7 43.01 22.2

  23 − 24.9 17.0 17.0 16.7

   ≥ 25 25.5 24.9 33.3

Vital signs at triage

  Glasgow coma scale 11.7 ± 3.9 11.6 ± 3.9 13.67 ± 2.4 0.002

  Systolic blood pressure (mmHg) 101.6 ± 23.0 102.3 ± 23.1 91.4 ± 19.8 0.037

  Heart rate (beats/min) 137.8 ± 36.8 137.9 ± 36.1 135.9 ± 46.9 0.859

  Respiratory rate (breaths/min) 20.1 ± 4.7 20.3 ± 4.7 18.0 ± 3.5 0.018

  Body temperature (°C) 36.6 ± 0.9 36.6 ± 0.9 36.6 ± 0.5 0.893

Bedridden (%) 66.8 66.8 66.7 0.805

Nasogastric tub feeding (%) 14.0 14.2 11.1  > 0.999

Past histories (%)

  Hypertension 62.7 64.0 44.4 0.159

  Hyperlipidemia 37.3 37.2 38.9 0.916

  Cerebrovascular accident 33.6 34.8 16.7 0.189

  Malignancy 15.1 15.4 11.1  > 0.999

  Chronic kidney disease 22.9 22.9 22.2  > 0.999

Laboratory data

  Blood urea nitrogen (mg/dL) 28.2 ± 15.2 28.2 ± 15.7 28.8 ± 7.7 0.753

  White blood cell count (103/µL) 11.6 ± 6.4 11.6 ± 6.5 12.6 ± 5.5 0.440

  Serum creatinine (mg/dL) 2.0 ± 1.7 2.0 ± 1.6 2.7 ± 2.3 0.234

  Hemoglobin (g/dL) 12.5 ± 3.0 12.5 ± 3.0 13.0 ± 2.6 0.391

  Glucose (mg/dL) 416.8 ± 367.3 407.7 ± 363.9 544.1 ± 401.1 0.177

  hs-CRP (mg/L) 50.4 ± 83.8 51.9 ± 85.7 29.0 ± 47.4 0.076

Concomitant infection (%) 62.0 62.8 50.0 0.405

PHD score 2.4 ± 1.4 2.4 ± 1.4 2.4 ± 1.3 0.127

PHD risk class (%)

  Low risk (Score 0–2) 50.9 49.8 66.7 0.366

  Intermediate risk (Score 3) 29.2 29.6 22.2

  High risk (Score ≥ 4) 19.9 20.6 11.1

Outcomes < 1 month (%)

  Sepsis or septic shock 37.6 37.5 38.9 0.890

  ICU admission 19.2 19.8 11.1 0.540

  All-cause mortality 14.8 15.0 11.1  > 0.999

Data are presented as % or mean ± SD. The independent t-test was used to analyze continuous variables, while the Chi-Square test was utilized to examine categorical 
variables

AI Artificial intelligence, ED Emergency department, ICU Intensive care unit, BMI Body mass index, hs-CRP High sensitivity C-reactive protein, PHD Predicting the 
hyperglycemic crisis death, SD Standard deviation
* Because the number of an AI group in the age category “20–34” is 0, we only conducted the test for the other four age subgroups
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Conclusions
We developed the first AI model to predict adverse out-
comes in ED patients with hyperglycemic crises and 
integrated it into the HIS to provide real-time decision 
assistance. ED physicians obtained a second opinion from 
big data in real time using AI, which helped them in their 
decision making. The impact study showed no significant 
difference in the ICU admission or all-cause mortality 
rates between the non-AI and AI groups; however, further 
studies recruiting more patients will clarify this issue.

Abbreviations
DKA	� Diabetic ketoacidosis
HHS	� Hyperosmolar hyperglycemic state
ED	� Emergency department
ICU	� Intensive care unit
PHD	� Predicting the hyperglycemic crisis death
AUC​	� Area under the curve
AI	� Artificial intelligence
CMMC	� Chi Mei Medical Center
ICD-9-CM	� International Classification of Diseases, Ninth Revision, Clinical 

Modification
BMI	� Body mass index
GCS	� Glasgow Coma Scale
hs-CRP	� High-sensitivity C-reactive protein
EMRs	� Electronic medical records
HIS	� Hospital information system
ML	� Machine learning
DL	� Deep learning
SVM	� Support vector machine
KNN	� K-nearest neighbor
LightGBM	� Light Gradient Boosting Machine
MLP	� Multilayer perceptron
PPV	� Positive predictive value
NPV	� Negative predictive value
SHAP	� SHapley Additive exPlanations
CDRs	� Clinical decision rules

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12902-​023-​01437-9.

Additional file 1: Supplementary Table 1. Hyper-parameters range 
for experiments. Supplementary Table 2. Statistics of missing value 
and given value for model training. Supplementary Table 3. The AI 
models for predicting ICU admission <48 hours in the ED patients with 

hyperglycemic crises. Supplementary Table 4. The p-value from the 
DeLong test to compare the model AUC.

Additional file 2: Supplementary Figure 1. Learning Curve for MLP in 
three adverse outcomes. Supplementary Figure 2. The AUC for three 
adverse outcomes in different algorithms. Supplementary Figure 3. 
SHAP values for the MP model. Supplementary Figure 4. AI button was 
integrated in the main screen of existing emergency department system. 
Supplementary Figure 5. A snapshot of the AI prediction result.

Acknowledgements
We thank Miss Yu-Shan Ma and Miss Yu-Ting Shen for their assistance with the 
statistics and algorithms. We thank Enago for the English revision.

Authors’ contributions
CCH (first author), YK, CFL, and CCH (tenth author) designed and conceived 
this study. CJC and TLL performed the data processing, deployed the AI 
web service, integrated the HIS, tested the application, and launched the 
application in the HIS. CFL performed model training and testing and sta‑
tistical analysis. CCH (third author), SLH, HJL, and JJW provided professional 
suggestions. All authors have read and approved the final manuscript.

Funding
This work was supported by grant CMFHR108124 from the Chi Mei Medical 
Center. The funder had no role in study design, data collection, and analysis, 
decision to publish, or preparation of the manuscript.

Availability of data and materials
The datasets analyzed for this study are available from the corresponding 
author upon reasonable request.

Declarations

Ethics approval and consent to participate
This study was approved by the Institutional Review Board of the Chi Mei 
Medical Center and was conducted according to the Declaration of Helsinki. 
Informed consent from the patients was waived because this study was 
retrospective and contained de-identified information, which did not affect 
the rights or welfare of the patients.

Consent for publication
Not applicable.

Competing interests
All authors deny any competing interests.

Author details
1 Department of Emergency Medicine, Chi Mei Medical Center, 901 Zhon‑
ghua Road, Yongkang District, Tainan City 710, Taiwan. 2 Graduate Institute 
of Medical Sciences, College of Health Sciences, Chang Jung Christian 
University, Tainan, Taiwan. 3  School of Medicine, College of Medicine, National 
Sun Yat-sen university, Kaohsiung, Taiwan. 4 Information Systems, Chi Mei 

Table 4  Comparison of predicting the ICU admission and all-cause mortality rates between the AI model using MLP and the PHD 
score

ICU Intensive care unit, AI Artificial intelligence, MLP Multilayer perceptron, PHD Predicting the hyperglycemic crisis death, PPV Positive predictive value, NPV Negative 
predictive value; F1, 2 × (precision × recall/precision + recall), AUC​ Area under the curve
* The DeLong test was used to compare the AUC between MLP model and PHD score [27]. Note: We adjusted the classification threshold to approach the same level of 
sensitivity as the prediction using the PHD score

All-cause mortality Accuracy Sensitivity Specificity PPV NPV F1 AUC​ p-value*

MLP model 0.776 0.637 0.797 0.314 0.938 0.421 0.796  < 0.001

PHD score 0.670 0.637 0.675 0.223 0.927 0.330 0.693

ICU admission Accuracy Sensitivity Specificity PPV NPV F1 AUC​ p-value

MLP model 0.809 0.521 0.827 0.161 0.964 0.246 0.743 0.084

PHD score 0.671 0.521 0.681 0.094 0.957 0.160 0.641

https://doi.org/10.1186/s12902-023-01437-9
https://doi.org/10.1186/s12902-023-01437-9


Page 13 of 14Hsu et al. BMC Endocrine Disorders          (2023) 23:234 	

Medical Center, Tainan, Taiwan. 5 Department of Nursing, Chi Mei Medical 
Center, Tainan, Taiwan. 6 Department of Emergency Medicine, Taipei Medical 
University, Taipei, Taiwan. 7 Department of Anesthesiology, Chi Mei Medical 
Center, Tainan, Taiwan. 8 Department of Anesthesiology, National Defense 
Medical Center, Taipei, Taiwan. 9 Department of Medical Research, Chi Mei 
Medical Center, 901 Zhonghua Road, Yongkang District, Tainan City 710, 
Taiwan. 10 Department of Emergency Medicine, Kaohsiung Medical University, 
Kaohsiung, Taiwan. 11 Department of Environmental and Occupational Health, 
College of Medicine, National Cheng Kung University, Tainan, Taiwan. 

Received: 12 September 2020   Accepted: 22 August 2023

References
	1.	 Benoit SR, Hora I, Pasquel FJ, Gregg EW, Albright AL, Imperatore G. Trends 

in Emergency Department Visits and Inpatient Admissions for Hyper‑
glycemic Crises in Adults With Diabetes in the U.S., 2006–2015. Diabetes 
Care. 2020;43(5):1057–64.

	2.	 Van Ness-Otunnu R, Hack JB. Hyperglycemic crisis. J Emerg Med. 
2013;45(5):797–805.

	3.	 Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in 
adult patients with diabetes. Diabetes Care. 2009;32(7):1335–43.

	4.	 Chung ST, Perue GG, Johnson A, Younger N, Hoo CS, Pascoe RW, Boyne 
MS. Predictors of hyperglycaemic crises and their associated mortality in 
Jamaica. Diabetes Res Clin Pract. 2006;73(2):184–90.

	5.	 Efstathiou SP, Tsiakou AG, Tsioulos DI, Zacharos ID, Mitromaras AG, Mas‑
torantonakis SE, Panagiotou TN, Mountokalakis TD. A mortality prediction 
model in diabetic ketoacidosis. Clin Endocrinol (Oxf ). 2002;57(5):595–601.

	6.	 Chen YM, Kao Y, Hsu CC, Chen CJ, Ma YS, Shen YT, Liu TL, Hsu SL, Lin HJ, 
Wang JJ, et al. Real-time interactive artificial intelligence of things-based 
prediction for adverse outcomes in adult patients with pneumonia in the 
emergency department. Acad Emerg Med. 2021;28(11):1277–85.

	7.	 Huang CC, Kuo SC, Chien TW, Lin HJ, Guo HR, Chen WL, Chen JH, Chang 
SH, Su SB. Predicting the hyperglycemic crisis death (PHD) score: a 
new decision rule for emergency and critical care. Am J Emerg Med. 
2013;31(5):830–4.

	8.	 MacIsaac RJ, Lee LY, McNeil KJ, Tsalamandris C, Jerums G. Influence of age 
on the presentation and outcome of acidotic and hyperosmolar diabetic 
emergencies. Intern Med J. 2002;32(8):379–85.

	9.	 Tan TH, Hsu CC, Chen CJ, Hsu SL, Liu TL, Lin HJ, Wang JJ, Liu CF, Huang 
CC. Predicting outcomes in older ED patients with influenza in real time 
using a big data-driven and machine learning approach to the hospital 
information system. BMC Geriatr. 2021;21(1):280.

	10.	 Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman 
W, Hall MK. Prediction of In-hospital Mortality in Emergency Depart‑
ment Patients With Sepsis: A Local Big Data-Driven Machine Learning 
Approach. Acad Emerg Med. 2016;23(3):269–78.

	11.	 Zhang PI, Hsu CC, Kao Y, Chen CJ, Kuo YW, Hsu SL, Liu TL, Lin HJ, Wang JJ, 
Liu CF, et al. Real-time AI prediction for major adverse cardiac events in 
emergency department patients with chest pain. Scand J Trauma Resusc 
Emerg Med. 2020;28(1):93.

	12.	 Agrawal VSP, Sneha S. Hyperglycemia Prediction Using Machine Learning: 
A Probabilistic Approach. In: International Conference on Advances in 
Computing and Data Sciences. 2019. p. 304–12.

	13.	 Ramyea RPS, Keerthana K, Keerthana R, Kavivarman J. An Intellectual 
Supervised Machine Learning Algorithm for the Early Prediction of 
Hyperglycemia. In: 2021 Innovations in Power and Advanced Computing 
Technologies (i-PACT). 2021. p. 1–7.

	14.	 Huang CC, Weng SF, Tsai KT, Chen PJ, Lin HJ, Wang JJ, Su SB, Chou W, Guo 
HR, Hsu CC. Long-term Mortality Risk After Hyperglycemic Crisis Episodes 
in Geriatric Patients With Diabetes: A National Population-Based Cohort 
Study. Diabetes Care. 2015;38(5):746–51.

	15.	 Kao Y, Hsu CC, Weng SF, Lin HJ, Wang JJ, Su SB, Huang CC, Guo HR. Sub‑
sequent mortality after hyperglycemic crisis episode in the non-elderly: a 
national population-based cohort study. Endocrine. 2016;51(1):72–82.

	16.	 Huang CC, Chou W, Lin HJ, Chen SC, Kuo SC, Chen WL, Chen JH, Wang HY, 
Guo HR. Cancer history, bandemia, and serum creatinine are independ‑
ent mortality predictors in patients with infection-precipitated hypergly‑
cemic crises. BMC Endocr Disord. 2013;13:23.

	17.	 Huang CC, Chien TW, Su SB, Guo HR, Chen WL, Chen JH, Chang SH, Lin 
HJ, Wang YF. Infection, absent tachycardia, cancer history, and severe 
coma are independent mortality predictors in geriatric patients with 
hyperglycemic crises. Diabetes Care. 2013;36(9):e151-152.

	18.	 Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, Huang ES, 
Korytkowski MT, Munshi MN, Odegard PS, et al. Diabetes in older adults. 
Diabetes Care. 2012;35(12):2650–64.

	19.	 Bae YJ, Shin SJ, Kang HT. Body mass index at baseline directly predicts 
new-onset diabetes and to a lesser extent incident cardio-cerebrovas‑
cular events, but has a J-shaped relationship to all-cause mortality. BMC 
Endocr Disord. 2022;22(1):123.

	20.	 Shukohifar M, Mozafari Z, Rahmanian M, Mirzaei M. Performance of body 
mass index and body fat percentage in predicting metabolic syn‑
drome risk factors in diabetic patients of Yazd. Iran BMC Endocr Disord. 
2022;22(1):216.

	21.	 Gholamy A, Kreinovich V, Kosheleva O. Why 70/30 or 80/20 relation 
between training and testing sets: A pedagogical explanation. 2018.

	22	 Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minor‑
ity Over-sampling Technique. J Artif Int Res. 2002;16:321–57.

	23.	 Grant K, McParland A, Mehta S, Ackery AD. Artificial intelligence in emer‑
gency medicine: surmountable barriers with revolutionary potential. Ann 
Emerg Med. 2020;75(6):721–6.

	24.	 Li YY, Wang JJ, Huang SH, Kuo CL, Chen JY, Liu CF, Chu CC. Implementa‑
tion of a machine learning application in preoperative risk assessment for 
hip repair surgery. BMC Anesthesiol. 2022;22(1):116.

	25.	 Liao KM, Ko SC, Liu CF, Cheng KC, Chen CM, Sung MI, Hsing SC, Chen CJ. 
Development of an interactive AI system for the optimal timing predic‑
tion of successful weaning from mechanical ventilation for patients in 
respiratory care centers. Diagnostics (Basel). 2022;12(4):975.

	26	 Erickson BJ, Kitamura F. Magician’s Corner: 9. Performance Metrics for 
Machine Learning Models. Radiol Artif Intell. 2021;3(3):e200126.

	27.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under 
two or more correlated receiver operating characteristic curves: a non‑
parametric approach. Biometrics. 1988;44(3):837–45.

	28.	 Anzanello MJ, Fogliatto FS. Learning curve models and applications: Lit‑
erature review and research directions. Int J Ind Ergon. 2011;41(5):573–83.

	29.	 Pal SK, Mitra S. Multilayer perceptron, fuzzy sets, and classification. IEEE 
Trans Neural Netw. 1992;3(5):683–97.

	30.	 Breiman L. Random Forests. Mach Learn. 2001;45:5–32.
	31.	 Tsai WC, Liu CF, Lin HJ, Hsu CC, Ma YS, Chen CJ, Huang CC, Chen CC. 

Design and implementation of a comprehensive AI dashboard for real-
time prediction of adverse prognosis of ED patients. Healthcare (Basel). 
2022;10(8):1498.

	32.	 Bisong E. Building Machine Learning and Deep Learning Models on 
Google Cloud Platform: Apress. 2019.

	33.	 Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY. LightGBM: A 
Highly Efficient Gradient Boosting Decision Tree. In: 31st Conference on 
Neural Information Processing Systems (NIPS 2017). Long Beach. 2017.

	34.	 Schölkopf BS, AJ. Learning with Kernels - Support Vector Machines, 
Regularization, Optimization and Beyond. Cambridge, MA, USA: MIT Press; 
2001.

	35	 Keller JM, Gray MR, Givens JA. A fuzzy K-nearest neighbor algorithm. IEEE 
Transactions on Systems, Man, and Cybernetics. 1985;SMC-15(4):580–5.

	36.	 Lundberg SML, S.I. A Unified Approach to Interpreting Model Predictions. 
In: Advances in neural information processing systems 30: 2017; 2017.

	37.	 Chung JY, Hsu CC, Chen JH, Chen WL, Lin HJ, Guo HR, Huang CC. 
Geriatric influenza death (GID) score: a new tool for predicting mortality 
in older people with influenza in the emergency department. Sci Rep. 
2018;8(1):9312.

	38.	 Green SM. When do clinical decision rules improve patient care? Ann 
Emerg Med. 2013;62(2):132–5.

	39.	 Lim SH. Clinical decision rules in emergency care. Singapore Med J. 
2018;59(4):169.

	40	 Singh P, Singh S, Pandi-Jain GS. Effective heart disease prediction system 
using data mining techniques. Int J Nanomed. 2018;13(T-NANO 2014 
Abstracts):121–4.

	41.	 Topol EJ. High-performance medicine: the convergence of human and 
artificial intelligence. Nat Med. 2019;25(1):44–56.

	42.	 Berlyand Y, Raja AS, Dorner SC, Prabhakar AM, Sonis JD, Gottumukkala RV, 
Succi MD, Yun BJ. How artificial intelligence could transform emergency 
department operations. Am J Emerg Med. 2018;36(8):1515–7.



Page 14 of 14Hsu et al. BMC Endocrine Disorders          (2023) 23:234 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	43.	 Crampton NH. Ambient virtual scribes: Mutuo Health’s AutoScribe as a 
case study of artificial intelligence-based technology. Healthc Manage 
Forum. 2020;33(1):34–8.

	44.	 Ramesh AN, Kambhampati C, Monson JR, Drew PJ. Artificial intelligence 
in medicine. Ann R Coll Surg Engl. 2004;86(5):334–8.

	45.	 Mandrekar JN. Receiver operating characteristic curve in diagnostic test 
assessment. J Thorac Oncol. 2010;5(9):1315–6.

	46.	 Nates JL, Nunnally M, Kleinpell R, Blosser S, Goldner J, Birriel B, Fowler CS, 
Byrum D, Miles WS, Bailey H, et al. ICU Admission, Discharge, and Triage 
Guidelines: A Framework to Enhance Clinical Operations, Develop‑
ment of Institutional Policies, and Further Research. Crit Care Med. 
2016;44(8):1553–602.

	47.	 Garvin JH, Redd A, Bolton D, Graham P, Roche D, Groeneveld P, Leecaster 
M, Shen S, Weiner MG. Exploration of ICD-9-CM coding of chronic disease 
within the Elixhauser Comorbidity Measure in patients with chronic heart 
failure. Perspect Health Inf Manag. 2013;10:1b.

	48.	 Hsieh CY, Su CC, Shao SC, Sung SF, Lin SJ, Kao Yang YH, Lai EC. Taiwan’s 
National Health Insurance Research Database: past and future. Clin Epide‑
miol. 2019;11:349–58.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Using artificial intelligence to predict adverse outcomes in emergency department patients with hyperglycemic crises in real time
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study design, setting, and participants
	Definition of feature variables
	Outcome measurements
	Ethical statement
	Data processing, comparison, and application
	ML algorithms used in this study

	Results
	Discussion
	Conclusions
	Anchor 18
	Acknowledgements
	References


