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Abstract

Background Hyperglycemic crises are associated with high morbidity and mortality. Previous studies have pro-
posed methods to predict adverse outcomes of patients in hyperglycemic crises; however, artificial intelligence (Al)
has never been used to predict adverse outcomes. We implemented an Al model integrated with the hospital infor-
mation system (HIS) to clarify whether Al could predict adverse outcomes.

Methods We included 2,666 patients with hyperglycemic crises from emergency departments (ED) between 2009
and 2018.The patients were randomized into a 70%/30% split for Al model training and testing. Twenty-two feature
variables from the electronic medical records were collected. The performance of the multilayer perceptron (MLP),
logistic regression, random forest, Light Gradient Boosting Machine (LightGBM), support vector machine (SVM),

and K-nearest neighbor (KNN) algorithms was compared. We selected the best algorithm to construct an Al model
to predict sepsis or septic shock, intensive care unit (ICU) admission, and all-cause mortality within 1 month. The
outcomes between the non-Al and Al groups were compared after implementing the HIS and predicting the hyper-
glycemic crisis death (PHD) score.

Results The MLP had the best performance in predicting the three adverse outcomes, compared with the random
forest, logistic regression, SVM, KNN, and LightGBM models. The areas under the curves (AUCs) using the MLP model
were 0.852 for sepsis or septic shock, 0.743 for ICU admission, and 0.796 for all-cause mortality. Furthermore, we
integrated the Al predictive model with the HIS to assist decision making in real time. No significant differences in ICU
admission or all-cause mortality were detected between the non-Al and Al groups. The Al model performed better
than the PHD score for predicting all-cause mortality (AUC 0.796 vs. 0.693).

Conclusions A real-time Al predictive model is a promising method for predicting adverse outcomes in ED patients
with hyperglycemic crises. Further studies recruiting more patients are warranted.
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Background

Diabetic ketoacidosis (DKA) and hyperosmolar hypergly-
cemic state (HHS) are severe acute complications of dia-
betes [1]. Precipitating factors include uncontrolled type
1 and 2 diabetes, infection, new-onset diabetes, pancrea-
titis, acute coronary syndrome, stroke, and medications
[2, 3]. Visits to the emergency department (ED) for DKA
and HHS have been increasing annually in the United
States. In 2015, there were 3.1 visits for DKA and 2.9 vis-
its for HHS per 10,000 adults with diabetes [1]. Although
treatment includes hydration, insulin therapy, and elec-
trolyte replacement, the mortality rate for hyperglycemic
crises remains high [4, 5] and can also increase the risk
for subsequent adverse cardiovascular events, end-stage
renal disease, and long-term mortality [6—8]. Risk strati-
fication (e.g., sepsis, intensive care unit [ICU] admission,
and mortality) may improve outcomes in hyperglycemic
crises [2, 3]. Prior studies identified mortality predictors,
such as age, mental status, severe coexisting diseases,
serum pH<7.0, high insulin dose within the first 12 h,
and serum glucose >16.7 mmol after 12 h [4, 5, 8], but a
clinical prediction rule may be more practical.

In 2013, the predicting the hyperglycemic crisis death
(PHD) score was proposed as a tool to help ED physicians
stratify the mortality risk and make decisions regarding
patients in hyperglycemic crises [7]. It consists of six pre-
dictors and stratifies patients into low, intermediate, and
high-risk groups. While the area under the curve (AUC)
for the rule was 0.925 in the validation set, the PHD score
was limited by a small derivation sample and manual cal-
culation [7]. In recent years, artificial intelligence (AI)
techniques have become a promising method to assist in
medical decisions, and several Al predictions for adverse
outcomes have been implemented in ED [6, 9-11]. How-
ever, no study has yet evaluated the feasibility and accu-
racy of Al predictions of adverse outcomes in ED patients
with hyperglycemic crises in real time [12, 13]. Therefore,
we carried out this study to clarify it.

Methods

Study design, setting, and participants

We established a multi-disciplinary team at the Chi Mei
Medical Center (CMMC), including emergency physi-
cians, data scientists, information engineers, nurse prac-
titioners, and quality managers to implement big data
and Al Adults (age > 20 years) with hyperglycemic crises
who visited the EDs of three hospitals (CMMC, Chi Mei
Liouying Hospital, and Chi Mei Chiali Hospital) between
2009 and 2018 were recruited (Fig. 1). The rationale that
we used to select patients aged >20 years is that a cri-
terion for an adult in Taiwan is “>20 years’, and it has
been adopted in many studies [6, 11]. The criteria for
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hyperglycemic crises were defined as the final diagnosis
of DKA or HHS in the ED, using the International Clas-
sification of Diseases, Ninth Revision, Clinical Modifica-
tion (ICD-9-CM) codes 250.1 or 250.2 and ICD-10 codes
E11.1 or E11.0. Patients who did not have a record of sub-
sequent follow-up and those who visited the ED for mul-
tiple hyperglycemic crises were excluded.

Definition of feature variables

The 22 feature variables retained for analysis were age,
sex, body mass index (BMI), vital signs at triage (Glas-
gow Coma Scale [GCS], systolic blood pressure, heart
rate, respiratory rate, and body temperature), bedridden,
nasogastric tube feeding, history of hypertension (ICD-
9-CM: 401-405 or ICD-10: 110-116), hyperlipidemia
(ICD-9-CM: 272.0-272.5, 277.7 or ICD-10: E78.0-E78.5,
E88.81), malignancy (ICD-9-CM: 140-208 or ICD-10:
C00-C69), chronic kidney disease (ICD-9-CM: 585
or ICD-10: N18), and laboratory data, including blood
urea nitrogen, serum creatinine, white blood cell count,
hemoglobin, glucose, and high sensitive C-reactive pro-
tein (hs-CRP), as well as concomitant infection (ICD-
9-CM: 001-139, 320-326, 390-392, 480488, 540—543,
555-558, 566—567, 599.0, 601, 604, 614—-616, 680—686,
730 or ICD-10: A00-B99, G00-G09, 100-102, J09-]18,
K35-K38, K50-K52, K61, K65, N39.0, N41, N45, N70-
N77, LO0-L08, M86, R65). The feature variables were
suggested predictors of adverse outcomes in previous
studies, and possible risk factors for adverse outcomes in
clinical practice [7, 14—17]. History was pre-existing at
the time of presentation as diagnosed by the physician in
the electronic medical records (EMRs). Age was divided
into four subgroups of 20-34, 35-49, 50-64, 64-74,
and > 75 years according to previous studies [6, 11, 18].
BMI was divided into four subgroups according to the
Asian BMI levels: <18.5, 18.5-22.9, 23-24.9, and > 25 kg/
m? [19, 20].

Outcome measurements

We defined three adverse outcomes, including sepsis or
septic shock<1 month (ICD-9-CM: 038, 790.7 or ICD-
10: A40-A41, R65, R7881), ICU admission<1 month,
and all-cause mortality<1 month following the time of
presentation in the ED. The general “ICU admission” cri-
teria in the study hospital were unstable vital signs and
the need for intensive monitoring and treatment. “All-
cause mortality” was defined as a record of death certifi-
cation or discharge against medical advice in a patient in
critical condition in the EMRs. We defined “<1 month”
for outcomes according to previous studies of hypergly-
cemic crises and Al [7, 11].
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Fig. 1 Study flow chart. CMMC, Chi Mei Medical Center; ED, emergency department; Al, artificial intelligence; HIS, hospital information system

Ethical statement

This study was approved by the Institutional Review
Board of the CMMC and was conducted according to
the Declaration of Helsinki. Informed consent from the
patients was waived because this study was retrospective
and contained de-identified information, which did not
affect the rights or welfare of the patients.

Data processing, comparison, and application

The study had two phases: pre- and post-implementation.
The pre-implementation phase developed an Al pre-
dictive model and integrated it with the HIS. The post-
implementation phase compared outcomes between
the non-AI and Al groups. The feature of sex was trans-
formed into 1 (male) or O (female). Missing or ambigu-
ous data were defined by a team comprising emergency
physicians, data scientists, information engineers, nurse
practitioners, and quality managers. Data with miss-
ing feature variables were deleted or estimated with an
average value. Second, we divided the data into training

(70%) and test (30%) datasets according to previous stud-
ies [6, 11, 21]. There were fewer outcomes, particularly
ICU admissions, which may have caused an imbalance
in the data. Therefore, we used the synthetic minority
over-sampling technique to improve the data imbalance
in the training dataset [22]. Machine learning (ML) and
deep learning (DL) are the two major fields of AI [23].
ML, including random forest, logistic regression, sup-
port vector machine (SVM), K-nearest neighbor (KNN),
and Light Gradient Boosting Machine (LightGBM), is
the ability that a computer system uses to automati-
cally improve their function or to “learn” with continu-
ous data [23]. DL, as the multilayer perceptron (MLP) in
this study, has a more complex network of nodes between
the inputs and outputs for solving complex problems
more accurately [23]. Because the case number was
small, we used MLP, a classical neural network method,
to represent the DL method. The MLP has been adopted
successfully in our studies [6, 9, 11, 24, 25]. We used
fivefold cross validation technique to build all models.
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We compared the ML algorithms, including random
forest, logistic regression, SVM, KNN, LightGBM, and
MLP for accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV), F1,
and AUC. Accuracy was defined as the fraction of cases
that the model correctly predicted [26]. Sensitivity was
the fraction of positive cases predicted as positive [26].
Specificity was the fraction of negative cases predicted
as negative [26]. PPV was the fraction of true positive
cases from all cases that the model predicted to be posi-
tive [26]. NPV was the fraction of negative cases from
all cases that the model predicted to be negative [26].
F1 was the harmonic mean of PPV and sensitivity [26].
Accuracy, PPV, NPV, and F1 depend on the prevalence
of adverse outcomes [26]. We used the AUC to deter-
mine the best model for further implementation [13-15]
because the AUC considers the predictive performance
of the positive and negative outcomes. An AUC of 0.5
suggests no discrimination, 0.7-0.8 suggests acceptable,
0.8-0.9 suggests excellent, and > 0.9 suggests outstanding
[26]. The tuning parameters we used to refine our mod-
els are shown in Supplementary Table 1. We performed
the DeLong test to assess overfitting of the training and
test models and plotted the learning curves for our model
(best model) [27]. The p-value of the DeLong test for the
best model (MLP model) was>0.05, indicating no sig-
nificant difference between the training and test models.
Therefore, no significant overfitting existed. Using the
learning curve [28] (Supplementary Fig. 1), we observed
no significant overfitting as the number of samples
increased, with the training score (F1 score) curve gradu-
ally approaching and overlapping the testing score curve.
Subsequently, we integrated the Al predictive model into
the HIS, deployed it at the Al web service, and launched
it for real-time decision-making assistance by ED physi-
cians. To reveal the real-time prediction result, a physi-
cian simply needed to press the AI button set up in the
HIS. We then conducted a retrospective impact study
between December 1, 2019, and April 30, 2021, in which
all ED patients with hyperglycemic crises were identified
and divided into non-Al and AI groups to compare out-
comes. The use of Al was an aid to decision-making and
depended on the physician’s discretion.

ML algorithms used in this study

MLP is an artificial neural network that maps input
data to appropriate outputs using an input layer, hidden
layer, and output layer, each connected by a synaptic
weight matrix and with nonlinear activation functions
and trained via backpropagation [29]. Its multiple lay-
ers and activation functions enable it to distinguish
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non-linearly separable data [29]. In a study predicting
adverse outcomes from pneumonia, MLP had AUCs of
0.749, 0.792, and 0.802 for sepsis or septic shock, res-
piratory failure, and mortality, respectively [6].

Random forest is an efficient ensemble technique that
contains multiple decision trees generated from com-
bined optimization decision trees, useful for classifi-
cation and regression, and preventing overfitting with
high accuracy even for incomplete datasets [30]. Ran-
dom forest has been widely used in Al medical studies
for prediction [31], including a study of predicting out-
comes in older ED patients with influenza, where their
random forest model achieved an AUC of 0.840 for
hospitalization, 0.765 for pneumonia, 0.857 for sepsis
or septic shock, 0.885 for ICU admission, and 0.875 for
in-hospital mortality [9].

Logistic regression is a statistical approach and
supervised ML algorithm used for classification prob-
lems by mapping features to categorical targets and
predicting the probability of a new case belonging to a
target class [32]. In a recent study of predicting major
adverse cardiac events in ED patients with chest pain,
logistic regression was used to achieve AUCs of 0.868
for acute myocardial infarction at<1 month and 0.716
for all-cause mortality at< 1 month [11].

LightGBM 1is a high-performing gradient boosting
framework that utilizes tree-based learning algorithms
and includes Gradient-based One-Side Sampling and
Exclusive Feature Bundling methods for selective sam-
pling and reduced dimensionality [33]. A study using
LightGBM as an algorithm reported AUCs of 0.774 for
sepsis or septic shock, 0.847 for respiratory failure, and
0.835 for mortality prediction [6].

SVM is a versatile algorithm that can address regres-
sion, binary, and multi-class classification problems by
identifying a hyperplane that maximizes the distance
between classes in the feature space [34]. In cases where
the classes are not linearly separable, the kernel trick is
used to project the feature vectors to a higher-dimen-
sional space [34]. SVM is widely used in medicine, with
a study reporting AUCs of 0.840 for hospitalization,
0.733 for pneumonia, 0.806 for sepsis or septic shock,
0.778 for ICU admission, and 0.762 for in-hospital
mortality in older patients with influenza [9].

KNN is a non-parametric, supervised learning clas-
sifier that predicts the grouping of an individual data
point using proximity to other data points [35]. A study
using KNN to predict major adverse cardiac events in
ED patients with chest pain reported AUCs for acute
myocardial infarction at<1 month and all-cause mor-
tality at <1 month of 0.865 and 0.969, respectively [11].
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Results

A total of 2,666 ED patients with hyperglycemic cri-
ses were recruited into the study at the three hospitals
between 2009 and 2018 (Table 1). Their mean age was
65.3+16.9 years, and the percentage of females was
45.7%. The four age subgroups were 20—34 years (5.8%),
35-49 years (11.9%), 50—64 years (25.8%), 65—74 years
(20.2%), and>75 years (36.3%). The mean BMI was
23.0 + 4.8 kg/m?. There were 60.2% of bedridden patients
and 8.0% of patients being fed by nasogastric tube. A his-
tory of hypertension (53.0%), hyperlipidemia (26.2%),
cerebrovascular accident (29.8%), malignancy (14.2%),
and chronic kidney disease (11.4%) were found. Concom-
itant infection was found in 46.8% of the patients. Within
1 month, 31.7% of patients had sepsis or septic shock,
6.0% required ICU admission, and 12.8% died. Missing
data were assigned values according to decisions made
at a multi-disciplinary team meeting (Supplementary
Table 2).

The MLP model outperformed other algorithms
with AUCs of 0.852 for sepsis or septic shock, 0.743
for ICU admission, and 0.796 for all-cause mortality in
the testing dataset (Table 2 and Supplementary Fig. 2)
[36]. After a consensus was reached, MLP was chosen
for Al implementation. SHapley Additive exPlanations
(SHAP) values were used to identify feature associa-
tions and importance (Supplementary Fig. 3). A model
was developed for predicting ICU admissions<48 h
with an AUC of 0.780 in the test dataset, outperform-
ing other algorithms. A DeLong test was used to com-
pare AUC values between algorithms (Supplementary
Table 4).

Meanwhile, it is crucial for models to be well calibrated
when used in real-world patient-level scenarios, as inac-
curacies in individual predicted probabilities may lead
to inappropriate decisions by physicians. To assess the
calibration of our models, we generated calibration plots
that depict the distribution of observed and predicted
case states across absolute probability subgroups or bins.
A calibration curve that closely aligns with the diagonal
indicates a higher level of calibration for the correspond-
ing model. Our evaluation, as demonstrated in Figs. 2, 3
and 4, reveals that the calibration guideline for all MLP
models was not significantly violated. Therefore, these
models can be considered suitable for implementing a
prediction system.

The HIS of the ED had an AI button (Supplementary
Fig. 4) that displayed the prediction within 1 s after being
pressed by the clinician (Supplementary Fig. 5). Al pre-
dictions were personalized and presented as percentages,
with risks categorized as low (0%—33%), moderate (33%—
66%), or high (66%—100%).
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Patients with hyperglycemic crises (n=271) between
December 1, 2019 and April 30, 2021 were identified
to compare the adverse outcomes between the non-Al
and Al groups (Table 3). The Al group tended to have
a lower ICU admission rate (11.1% vs. 19.8%) and all-
cause mortality (11.1% vs. 15.0%) than the non-Al
group; however, the differences were not significant.
In addition, we used the same data to validate the PHD
score and found that the Al model using MLP for pre-
dicting all-cause mortality performed better than the
PHD score (Table 4).

Discussion

We developed an Al prediction model using MLP for
ED patients with hyperglycemic crises that provided
real-time decision-making assistance to physicians. The
AUC of the model was 0.852 for sepsis or septic shock,
0.743 for ICU admissions, and 0.796 for all-cause mortal-
ity within 1 month. The impact study showed that the Al
group tended to have lower ICU admissions and all-cause
mortality than the non-Al group, but the differences
were not significant.

Clinical decision rules (CDRs) like the PHD score can
help with critical decision-making regarding patient
health [37-39], but they have limitations. CDRs are
designed to simplify complexity, and they should be
externally validated in diverse settings to ensure appli-
cability [37, 38]. They may not be applicable to a user’s
clinical setting or a targeted population, and they require
manual calculation, which can be inconvenient in a busy
ED [37, 38].

Al is a breakthrough in healthcare that has the poten-
tial to improve the system. MLP, a significant model in
the artificial neural network, is preferred for solving
nonlinear problems. It consists of the input, hidden,
and output layers and mimics the human brain [40].
Unlike other computerized tools, Al learns, tests, and
generates autonomously by analyzing big data [23, 41].
Al offers various opportunities for ED care, includ-
ing image interpretation, predicting patient outcomes,
monitoring vital signs, reducing documentation burden
with natural-language-processing, home monitoring
systems, and outbreak prediction tools [41-44].

We integrated an Al prediction model into the HIS,
which overcame barriers between Al research and
clinical practice, but there were implementation barri-
ers. Hospital policies and cooperation from the hospi-
tal information department were crucial for successful
implementation. Additionally, incorporating Al into the
HIS was technically challenging and may require over-
hauling existing information technology systems. Finally,
concerns regarding malpractice, accuracy, and physician
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Calibration plots (Outcome-Sepsis or septic shock <1 month)
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Fig. 2 Calibration plot: predicted and true probability results for sepsis and septic shock

Calibration plots (Outcome-ICU admission <1 month)
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Fig. 3 Calibration plot: predicted and true probability results for ICU admission. ICU, intensive care unit
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Calibration plots (Outcome-All-cause mortality <1 month)
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Fig. 4 Calibration plot: predicted and true probability results for all-cause mortality

replacement by Al may affect physician acceptance of Al
implementation [23].

Based on the same dataset, the AUC of all-cause mor-
tality of the best model in our study was superior to that
of the PHD score (0.796 vs. 0.693), suggesting that our Al
model may be a better tool for predicting adverse out-
comes in ED patients with hyperglycemic crises than the
conventional PHD score.

We used the AUC, a recognized and comprehensive
metric, to select the algorithm for our study [6, 9-11].
A major advantage of AUC is that it measures the rank-
ing of predictions, rather than their absolute values,
and is classification-threshold-invariant [45]. However,
the choice of metric depends on the study’s aim [10].
For instance, if high sensitivity to predict sepsis or sep-
tic shock was the aim, we may have chosen LightGBM
since it had the best sensitivity of 0.803 in our study.

We used the SHAP value, a new method to increase
the transparency of AI prediction, to identify the
importance of each feature variable for determining
adverse outcomes [36]. In the SHAP summary plot, red
and blue indicate high and low associations, respec-
tively, between the feature variable and an adverse out-
come [36].

The study implemented a real-time Al prediction
model integrated in the HIS to predict adverse out-
comes in ED patients with hyperglycemic crises, which
was a major strength. However, there were some limi-
tations. The AUC for predicting ICU admission was
lower than that for sepsis or septic shock and all-cause
mortality, possibly due to the subjective nature of ICU
admission decision-making [46]. The results of the
DeLong test (Table 2) indicate that, except for MLP
models, there is a potential for overfitting in most
models, which should be approached with caution. It
is worth considering increasing the size of the data to
potentially mitigate this issue and improve the perfor-
mance of the models. The “black box” phenomenon
remained a problem [23], but using the SHAP value
may help increase transparency [36]. The impact of
Al prediction on clinical practice was not fully evalu-
ated, and further studies are needed. The Al predic-
tion model may not be generalizable to other hospitals,
and ethical and legislative issues may arise from using
Al predictions as a tool. There were also limitations in
the ICD measures [47, 48]. Lastly, the sample size of
new patients was small, warranting more patients to be
recruited to delineate this issue.
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Table 3 Comparison of clinical characteristics and adverse outcomes between the non-Al and Al groups in new ED patients with
hyperglycemic crises between December 1, 2019 and April 30, 2021

Variable Overall Non-Al Al p-value
n=271 n=253 n=18
Age (years) 69.6+16.6 70.0+16.8 64.4+135 0.113
Age subgroup (%) 0.090*
20-34 44 4.7 0
35-49 8.1 75 16.7
50-64 188 17.8 333
65-74 214 209 27.8
>75 472 49.0 222
Sex (%)
Female 450 45.8 333 0432
Male 55.0 542 66.7
Body mass index (kg/m?) 22.7+46 227+46 229+47 0.849
Asian BMI level subgroup (%)
<185 159 15.0 278 0.267
185-229 417 43.01 222
23-249 17.0 17.0 16.7
>25 255 249 333
Vital signs at triage
Glasgow coma scale 11.7+39 116439 1367424 0.002
Systolic blood pressure (mmHg) 101.6+23.0 102.3+23.1 9144198 0.037
Heart rate (beats/min) 137.8+36.8 137.9+36.1 1359+46.9 0.859
Respiratory rate (breaths/min) 20.1+4.7 203+4.7 180+35 0.018
Body temperature (°C) 36.6+09 36.6+09 36.6+05 0.893
Bedridden (%) 66.8 66.8 66.7 0.805
Nasogastric tub feeding (%) 14.0 14.2 1.1 >0.999
Past histories (%)
Hypertension 62.7 64.0 444 0.159
Hyperlipidemia 373 372 389 0916
Cerebrovascular accident 336 348 16.7 0.189
Malignancy 15.1 154 111 >0.999
Chronic kidney disease 229 229 222 >0.999
Laboratory data
Blood urea nitrogen (mg/dL) 2824152 282+157 288+77 0.753
White blood cell count (10%/uL) 11.6+64 11.6+6.5 126+55 0.440
Serum creatinine (mg/dL) 20117 20116 27423 0.234
Hemoglobin (g/dL) 125430 125430 130126 0391
Glucose (mg/dL) 4168+367.3 407.7+363.9 544.1£401.1 0.177
hs-CRP (mg/L) 5044838 51.9+85.7 2904474 0.076
Concomitant infection (%) 62.0 62.8 50.0 0.405
PHD score 24+14 2414 24+13 0.127
PHD risk class (%)
Low risk (Score 0-2) 509 4938 66.7 0.366
Intermediate risk (Score 3) 29.2 296 222
High risk (Score > 4) 19.9 20.6 1.1
Outcomes < 1 month (%)
Sepsis or septic shock 376 375 389 0.890
ICU admission 19.2 19.8 1.1 0.540
All-cause mortality 14.8 15.0 11.1 >0.999

Data are presented as % or mean = SD. The independent t-test was used to analyze continuous variables, while the Chi-Square test was utilized to examine categorical
variables

Al Artificial intelligence, ED Emergency department, ICU Intensive care unit, BMI Body mass index, hs-CRP High sensitivity C-reactive protein, PHD Predicting the
hyperglycemic crisis death, SD Standard deviation

" Because the number of an Al group in the age category “20-34"is 0, we only conducted the test for the other four age subgroups
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Table 4 Comparison of predicting the ICU admission and all-cause mortality rates between the Al model using MLP and the PHD

score

All-cause mortality Accuracy Sensitivity Specificity
MLP model 0.776 0.637 0.797
PHD score 0.670 0.637 0.675

ICU admission Accuracy Sensitivity Specificity
MLP model 0.809 0.521 0.827
PHD score 0.671 0.521 0.681

PPV NPV F1 AUC p-value*
0314 0938 0421 0.796 <0.001
0.223 0.927 0330 0.693

PPV NPV F1 AUC p-value
0.161 0.964 0.246 0.743 0.084
0.094 0.957 0.160 0.641

ICU Intensive care unit, Al Artificial intelligence, MLP Multilayer perceptron, PHD Predicting the hyperglycemic crisis death, PPV Positive predictive value, NPV Negative
predictive value; F1, 2 X (precision X recall/precision + recall), AUC Area under the curve

" The Delong test was used to compare the AUC between MLP model and PHD score [27]. Note: We adjusted the classification threshold to approach the same level of

sensitivity as the prediction using the PHD score

Conclusions

We developed the first AI model to predict adverse out-
comes in ED patients with hyperglycemic crises and
integrated it into the HIS to provide real-time decision
assistance. ED physicians obtained a second opinion from
big data in real time using Al, which helped them in their
decision making. The impact study showed no significant
difference in the ICU admission or all-cause mortality
rates between the non-Al and Al groups; however, further
studies recruiting more patients will clarify this issue.

Abbreviations

DKA Diabetic ketoacidosis

HHS Hyperosmolar hyperglycemic state

ED Emergency department

ICU Intensive care unit

PHD Predicting the hyperglycemic crisis death
AUC Area under the curve

Al Artificial intelligence

CMMC Chi Mei Medical Center

ICD-9-CM  International Classification of Diseases, Ninth Revision, Clinical
Modification

BMI Body mass index

GCS Glasgow Coma Scale

hs-CRP High-sensitivity C-reactive protein

EMRs Electronic medical records

HIS Hospital information system

ML Machine learning

DL Deep learning

SVM Support vector machine

KNN K-nearest neighbor

LightGBM  Light Gradient Boosting Machine

MLP Multilayer perceptron

PPV Positive predictive value

NPV Negative predictive value

SHAP SHapley Additive exPlanations

CDRs Clinical decision rules
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