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Gene expression of sternohyoid and diaphragm
muscles in type 2 diabetic rats
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Abstract

Background: Type 2 diabetes differs from type 1 diabetes in its pathogenesis. Type 1 diabetic diaphragm has
altered gene expression which includes lipid and carbohydrate metabolism, ubiquitination and oxidoreductase
activity. The objectives of the present study were to assess respiratory muscle gene expression changes in type 2
diabetes and to determine whether they are greater for the diaphragm than an upper airway muscle.

Methods: Diaphragm and sternohyoid muscle from Zucker diabetic fatty (ZDF) rats were analyzed with Affymetrix
gene expression arrays.

Results: The two muscles had 97 and 102 genes, respectively, with at least ± 1.5-fold significantly changed
expression with diabetes, and these were assigned to gene ontology groups based on over-representation analysis.
Several significantly changed groups were common to both muscles, including lipid metabolism, carbohydrate
metabolism, muscle contraction, ion transport and collagen, although the number of genes and the specific genes
involved differed considerably for the two muscles. In both muscles there was a shift in metabolism gene
expression from carbohydrate metabolism toward lipid metabolism, but the shift was greater and involved more
genes in diabetic diaphragm than diabetic sternohyoid muscle. Groups present in only diaphragm were blood
circulation and oxidoreductase activity. Groups present in only sternohyoid were immune & inflammation and
response to stress & wounding, with complement genes being a prominent component.

Conclusion: Type 2 diabetes-induced gene expression changes in respiratory muscles has both similarities and
differences relative to previous data on type 1 diabetes gene expression. Furthermore, the diabetic alterations in
gene expression differ between diaphragm and sternohyoid.
Background
Diabetes mellitus is one of the most rapidly growing
chronic diseases of our time, with human type 2 diabetes
becoming more prevalent than type 1 diabetes due to
factors such as physical inactivity and increased obesity.
Associated with the increasing prevalence of obesity and
type 2 diabetes is the growing problem of obstructive
sleep apnea and its adverse cardiovascular and neuro-
psychiatric consequences. Upper airway respiratory mus-
cles are critical for the maintenance of pharyngeal patency
during wakefulness and sleep, and for the restoration of
pharyngeal patency when obstructive apneas occur during
sleep. Many studies in humans and animal models of
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diabetes have confirmed reduced strength and endurance
in respiratory and other skeletal muscles, [1-3] which re-
duces exercise performance and increases dyspnea [4-6].
Interestingly, upper airway muscle contractile properties
are affected less than those of the diaphragm by type 1
diabetes, [3,7] although comparable data in type 2 diabetes
are lacking.
Several cellular mechanisms underlying limb muscle

adverse contractile changes have been identified from
biochemical and electrophysiological studies in animal
models of diabetes [8-11]. With respect to respiratory
muscles, in type 1 diabetic diaphragm the expression of
metabolism genes shifted by a small decrease in lipid
metabolism gene expression and a large increase in
carbohydrate metabolism gene expression; in addition
there was increased expression of protein ubiquitination
genes (a mechanism of protein breakdown), and in-
creased expression of oxidoreductase genes (indicative of
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oxidative stress) [12]. It is unclear if type 2 diabetes affects
gene expression of the respiratory muscles in the same
manner as type 1 diabetes. Furthermore, it is unknown
whether upper airway muscles are affected by diabetes in a
similar manner as the diaphragm. However it is known
from gene expression studies that compared with the
diaphragm, the sternohyoid muscle has higher expres-
sion of carbohydrate metabolism genes, as well as lower
expression of lipid metabolism genes, especially those
involved directly in fatty acid β oxidation and biosyn-
thesis in the mitochondria [13]. The hypothesis of the
present study is that type 2 diabetes produces substan-
tial changes in gene expression of the upper airway
muscles, which furthermore differs both qualitatively
and quantitatively from those of the diaphragm.

Methods
All studies were approved by the institutional animal
care and use committee and conformed with NIH
guidelines for animal care. Studies were performed on
11 male Zucker Diabetic Fatty (ZDF) rats, an animal
model of obesity and type 2 diabetes, obtained from
Charles River Laboratories (Wilmington, MA). All animals
had free access to food and water. Obese (fa/fa) animals
(n=5) were fed Purina diet #5008, which induces develop-
ment of type 2 diabetes between 8 and 12 weeks of age
(Corsetti et al. 2000). Lean (+/?) littermates (n=6) were fed
normal rodent chow. At an age of eighteen weeks, all
animals were well-anesthetized with a mixture of intrape-
ritoneal ketamine, xylazine and acepromazine following an
all-night fast. Blood obtained from the tail was analyzed
for glucose using a glucometer (Lifescan, Milpitas, CA).
The entire sternohyoid and costal diaphragm muscles
were removed surgically, placed in RNAlater, and stored
at -80°C. At the time of muscle removal, fasting blood
glucose values were 58 ± 7 mg/dl (range 36–77) for the
normal animals, and 183 ± 60 mg/dl (range 133–275) for
the obese ZDF animals (P < 0.001 by unpaired t test). The
obese animals had a final weight that was heavier than the
lean animals (424 ± 28 vs 348 ± 5 grams, for obese and
lean, respectively, P < 0.02). Animals were not treated
with insulin or oral hypoglycemics because the purpose
of the study was to determine the effects of diabetes on
gene expression rather than the extent to which treatment
of diabetes would attenuate the changes.
Gene expression array studies were performed in a

manner similar to that described previously [14-16]. Total
RNA was extracted using Trizol (GibcoBRL, Rockville,
MD), and the RNA pellets were resuspended at 1 μg
RNA/μl DEPC-treated water. This was followed by a
cleanup protocol with a Qiagen (Valencia, CA) RNeasy
Total RNA mini kit. Total RNA was prepared using
Affymetrix (Santa Clara, CA) microarrays, according to
the directions from the manufacturer. Briefly, 8 μg of
RNA was used in a reverse transcription reaction
(SuperScript II; Life Technologies, Rockville, MD) to
generate first strand cDNA. After second strand synthe-
sis, double strand cDNA was used in an in vitro tran-
scription reaction to generate biotinylated cRNA, which
was purified and fragmented. Next, 15 μg of biotin-
labeled cRNA was used in a 300 μl hybridization cock-
tail which included spiked transcript controls. 200 μl
of cocktail was loaded onto Affymetrix RAE 230A
microarrays (Santa Clara, CA) and hybridized for 16 hr
at 45°C with agitation. Standard post-hybridization
washes and double-stain protocols used an Affymetrix
GeneChip Fluidics Station 400. Arrays were scanned
using a Hewlett Packard Gene Array scanner, and ana-
lyzed with Affymetrix GCOS software. The data have
been deposited in NCBIs Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=
jjgprsaqewuayxo&acc=GSE21791) and assigned Series acces-
sion number GSE21791.
Statistical analysis was done with Bayesian analysis of

variance for microarrays (BAM), using BAMarray software
(http://www.bamarray.com) [17]. BAM balances the num-
ber of false detections against false non-detections by
means of a special type of inferential regularization (i.e.
borrowing strength across the data). Genes were further
selected as significant based on consistent and appropriate
present and absent calls in all samples per Affymetrix soft-
ware. Subsequently signals were averaged for muscle from
the lean and obese animals, and fold changes were calcu-
lated based on average values from each group. Analysis
focused on genes whose expression changed at least ±1.5
fold in obese compared with lean muscle. To assign bio-
logical meaning to the group of genes with changed ex-
pression, the subset of genes which met the above criteria
was further analyzed with the Gene Ontology (GO) classi-
fication system, using DAVID software (http://david.abcc.
ncifcrf.gov/) [18]. Over-representation of genes with al-
tered expression within specific GO categories was deter-
mined using the one-tailed Fisher exact probability
modified by the addition of a jackknifing procedure, which
penalizes the significance of categories with very few (eg.
one or two) genes and favors more robust categories with
larger numbers of genes [19].
Real-time PCR (RT-PCR) was used to confirm changes

in gene expression as described previously [14-16]. Test-
ing was done using the same tissue that had been used
for gene expression arrays, and was performed on genes
which were chosen from the main, statistically over-
represented, GO groupings based on biological interest.
An Applied Biosystems ABI 7900HT unit with automa-
tion attachment (Foster City, CA) was used for real-time
PCR. This unit is capable of collecting spectral data at
multiple points during a PCR run. To execute the first
step and make archive cDNA, 3 μg of total RNA were
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reverse transcribed in a 100 μl reaction using Applied
Biosystems enzymes and reagents in accordance with the
manufacturer’s protocols. RNA samples were accurately
quantitated using a Nanodrop Technologies ND-1000
spectrophotometer (Wilmington, DE). Equal amounts of
total RNA were reverse transcribed and then used in PCR
amplifications. β-Actin had very little variation in ex-
pression across the sample set and therefore was chosen
as the endogenous control. Since many of the target
genes of interest were signaling molecules and likely to
be expressed at low levels, we opted for a low dilution
factor so as to create an environment more conducive
to obtaining reliable results. The cDNA reaction from
above was diluted by a factor of 10. For the PCR step,
9 μl of this diluted cDNA were used for each of three
replicate 15 μl-reactions carried out in a 384 well plate.
Standard PCR conditions were used for the Applied
Biosystems assays: 50°C for 2 min, followed by 95°C for
10 min, followed by 40 cycles of 95°C for 15 sec alter-
nating with 60°C for 1 min each. rtPCR analysis was
similar to our previous studies14-16. Values for RNA
abundance were normalized for each gene with respect
to the endogenous control in that sample (β-Actin),
mean values for fold changes were calculated for each
gene, and statistical testing was performed with the
unpaired t-test (two-tailed).

Results
There were 54 genes with significantly increased expres-
sion and 43 genes with significantly reduced expression in
diabetic compared with normal diaphragm, using the cut-
off of at least a ± 1.5-fold changed expression in addition
to consistent present calls by Affymetrix software and stat-
istical significance by BAM. Using the same criteria, there
were 50 genes with significantly increased expression and
52 genes with significantly reduced expression in diabetic
compared to normal sternohyoid. A complete list of these
genes, including mean fold change values for each gene, is
provided in Additional file 1 (for online publication only).
Classification of genes by Gene Ontology (GO) groups
and statistical testing of over-representation among GO
groups was done separately for each muscle for the genes
with significantly changed expression.
Among the genes with at least 1.5-fold changed expres-

sion in diabetic diaphragm, assignment to GO groups was
possible for 55 using the biological function classification,
61 using the molecular function classification, and 69
using the cellular constituent classification. In the diabetic
sternohyoid, assignment to GO groups was possible for 66
using the biological function classification, 45 using
the molecular function classification, and 58 using the
cellular constituent classification. The GO terms with
over-representation among these genes in the diaphragm
and sternohyoid are indicated in Table 1.
The identified GO groups varied considerably with
respect to number of constituent genes (ranging from 2
to 71) and degree of specificity (e.g., from specific terms
such as fatty acid transport and glycerol-3-phosphate
dehydrogenase activity to general terms such as cell and
binding). The more specific GO groups were chosen for
further analysis; in many instances there were clusters
of closely related GO groups that were considered to-
gether (Table 2). Themes common to both muscles were
lipid metabolism, carbohydrate metabolism, muscle
contraction, ion transport and collagen. Themes present
in only diaphragm were blood circulation and oxidore-
ductase activity. Themes present in only sternohyoid
were immune & inflammation and response to stress &
wounding.
The genes in both the diaphragm and sternohyoid

that were classified in either lipid or carbohydrate me-
tabolism GO groups, as well as the direction and magni-
tude of their changed expression, are listed in Table 3.
In the diaphragm there were 9 genes involved in lipid
metabolism (6 increased/3 decreased) and 7 genes in-
volved in carbohydrate metabolism (1 increased/6 de-
creased). In the sternohyoid, there were 10 genes involved
in lipid metabolism (7 increased/3 decreased) and 2 genes
involved in carbohydrate metabolism (0 increased/2
decreased). With respect to specific genes, there were
only 3 genes that had changed expression in both dia-
phragm and sternohyoid in response to diabetes. Carni-
tine O-octanoyltransferase (Crot), which plays a role in
fatty acid transport, was increased in both muscles.
Glycerol-3-phosphate dehydrogenase 2 (Gpd2), a carbohy-
drate metabolism gene which is involved in gluconeogene-
sis, and Acyl-CoA synthetase (Acsl6), a major enzyme in
fatty acid metabolism gene, were decreased in both tissues.
For both muscles together, lipid metabolism gene expres-
sion was increased more than decreased (total 13 vs. 6
genes). On the other hand, for carbohydrate metabolism,
there were more genes that had decreased expression than
those that had increased expression (total 8 vs. 1 genes).
There were 5 muscle contraction genes with signifi-

cantly changed expression in the diaphragm (4 increased/
1 decreased) and 6 with significantly changed expression
in the sternohyoid (4 increased/2 decreased) with diabetes
(Table 3). Of note is that myosin binding protein H
(Mybph) and calsequestrin 2 (Casq2) were increased in
both muscles, while none of the other muscle contraction
genes with changed expression were in common. For both
muscles together muscle contraction gene expression was
increased more than decreased (total 9 vs. 3 genes).
Of the 20 genes from the ion transport GO groups in

the diaphragm with changed expression due to diabetes, 9
are involved in calcium transport (Table 3). Five calcium
genes were increased (Myl6b, Casq2, Itga7, Cacnb2 and
Sln) whereas four of the calcium genes were decreased



Table 1 Statistically significant over-represented Gene Ontology (GO) terms to which genes with changed expression
in diaphragm and sternohyoid of diabetic animals were assigned

DIAPHRAGM

GO classification GO group # genes P value

Biological process

Transport 27 0.000089

Establishment of localization 27 0.00020

Monocarboxylic acid metabolic process 8 0.00035

Localization 29 0.00050

Monosaccharide biosynthetic process 4 0.00067

Alcohol biosynthetic process 4 0.00071

Ion transport 12 0.0015

Alcohol metabolic process 8 0.0018

Hexose metabolic process 6 0.0036

Monosaccharide metabolic process 6 0.0037

Carboxylic acid metabolic process 9 0.0069

Inorganic anion transport 5 0.0072

Organic acid metabolic process 9 0.0073

Regulation of ion transport 3 0.014

Striated muscle contraction 3 0.014

Anion transport 5 0.015

Carbohydrate biosynthetic process 4 0.016

Blood circulation 5 0.016

Circulatory system process 5 0.017

Regulation of biological process 28 0.018

Lipid metabolic process 9 0.019

Heart development 4 0.022

Cardiac muscle development 2 0.027

Cellular carbohydrate metabolic process 6 0.034

Peptide transport 3 0.036

Carbohydrate metabolic process 7 0.040

Circadian rhythm 3 0.040

Multicellular organismal development 18 0.042

Regulation of multicellular organismal process 6 0.044

Developmental process 23 0.045

Regulation of transport 4 0.046

Regulation of the force of heart contraction 2 0.047

Long-chain fatty acid transport 2 0.048

Cellular constituent

Cytoplasm 42 0.0000080

Cytoplasmic part 30 0.0014

Fibrillar collagen 3 0.0015

Sarcoplasmic reticulum 3 0.0047

Intracellular part 50 0.0048

Sarcoplasm 3 0.0065

Sarcomere 4 0.0066

Endosome 5 0.0066

Plasma membrane 20 0.0072

Endoplasmic reticulum 10 0.0097

van Lunteren and Moyer BMC Endocrine Disorders 2013, 13:43 Page 4 of 23
http://www.biomedcentral.com/1472-6823/13/43



Table 1 Statistically significant over-represented Gene Ontology (GO) terms to which genes with changed expression
in diaphragm and sternohyoid of diabetic animals were assigned (Continued)

Myofibril 4 0.010

Contractile fiber part 4 0.010

Intracellular 52 0.011

Collagen type I 2 0.013

Contractile fiber 4 0.014

Collagen 3 0.018

Smooth endoplasmic reticulum 2 0.032

Cell part 71 0.039

Cell 71 0.039

Molecular function

Protein binding 39 0.0034

Substrate specific channel activity 6 0.018

Calcium ion binding 9 0.024

Structural constituent of bone 2 0.026

Passive transmembrane transporter activity 6 0.030

Transporter activity 13 0.031

Channel activity 6 0.031

Auxiliary transport protein activity 3 0.032

Substrate-specific transporter activity 11 0.033

Oxidoreductase activity 10 0.035

Binding 58 0.039

Transmembrane transporter activity 10 0.044

STERNOHYOID

GO classification GO group # genes P value

Biological process

Regulation of multicellular organismal process 12 0.0000012

Humoral immune response 6 0.0000075

Complement activation 5 0.000014

Activation of plasma proteins during acute inflammatory response 5 0.000016

Acute inflammatory response 6 0.000027

Regulation of immune response 6 0.000027

Regulation of immune system process 6 0.000036

Activation of immune response 5 0.000070

Immune effector process 6 0.000076

Response to stress 17 0.000096

Monocarboxylic acid metabolic process 9 0.00010

Positive regulation of immune response 5 0.00013

Positive regulation of immune system process 5 0.00016

Carboxylic acid metabolic process 12 0.00021

Innate immune response 5 0.00025

Organic acid metabolic process 12 0.00078

Positive regulation of multicellular organismal process 5 0.00091

Long-chain fatty acid transport 3 0.0012

Muscle contraction 6 0.0015

Muscle system process 6 0.0017

Fatty acid transport 3 0.0021

Regulation of muscle contraction 4 0.0022
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Table 1 Statistically significant over-represented Gene Ontology (GO) terms to which genes with changed expression
in diaphragm and sternohyoid of diabetic animals were assigned (Continued)

Response to hormone stimulus 6 0.0028

Fatty acid metabolic process 6 0.0030

B cell mediated immunity 4 0.0032

Immune response 9 0.0033

Anion transport 6 0.0037

Lymphocyte mediated immunity 4 0.0048

Adaptive immune response based on somatic recombination of immune receptors built from
immunoglobulin superfamily domains

4 0.0057

Adaptive immune response 4 0.0062

Humoral immune response mediated by circulating immunoglobulin 3 0.0064

Complement activation-classical pathway 3 0.0064

Defense response 8 0.0067

Leukocyte mediated immunity 4 0.0071

Response to biotic stimulus 6 0.0074

Lipid transport 4 0.0077

Inflammatory response 6 0.0082

Positive regulation of biological process 13 0.0082

Response to external stimulus 10 0.0084

Ion transport 11 0.0089

Inorganic anion transport 5 0.010

Cellular lipid metabolic process 9 0.010

Response to unfolded protein 4 0.011

Response to protein stimulus 4 0.011

Lipid metabolic process 10 0.012

Immune system process 10 0.013

Metabolic process 53 0.015

Response to steroid hormone stimulus 4 0.022

Response to wounding 7 0.023

Response to endogenous stimulus 7 0.028

Response to corticosteroid stimulus 3 0.029

Regulation of Wnt receptor signaling pathway 3 0.030

Response to peptide hormone stimulus 3 0.037

Regulation of biological process 28 0.038

Cellular metabolic process 45 0.049

Cellular constituent

Cytoplasm 45 9.2E-07

Extracellular region part 25 0.000068

Proteinaceous extracellular matrix 9 0.000087

Extracellular matrix 9 0.00010

Extracellular region 25 0.00017

Extracellular space 23 0.00030

Collagen 4 0.0013

Cytoplasmic part 31 0.00140

Fibrillar collagen 3 0.0016

Extracellular matrix part 5 0.00230

Intracellular part 52 0.0040

Endoplasmic reticulum 10 0.0080
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Table 1 Statistically significant over-represented Gene Ontology (GO) terms to which genes with changed expression
in diaphragm and sternohyoid of diabetic animals were assigned (Continued)

Intracellular 54 0.011

Complement component C1 complex 2 0.012

Collagen type I 2 0.012

Glycerol-3-phosphate dehydrogenase complex 2 0.018

Organelle outer membrane 3 0.033

Envelope 7 0.034

Organelle envelope 7 0.036

Molecular function

Glutathione transferase activity 4 0.00076

Catalytic activity 43 0.00090

Calcium ion binding 12 0.0033

Transferase activity- transferring alkyl or aryl (other than methyl) groups 4 0.0042

Glycerol-3-phosphate dehydrogenase activity 2 0.012

Transferase activity 17 0.024

Structural constituent of bone 2 0.029

Magnesium ion binding 5 0.037
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(Pvalb, Pln, S100a3 and Gpd2). The other smaller groups
of ion transport genes were sodium and/or potassium
(3 genes), chloride (1 gene), water (1 gene) and zinc (1 gene)
and several other miscellaneous groups. There were
also 4 collagen genes listed in the ion GO groups. Of
the 23 genes from the ion transport GO groups in the
sternohyoid with diabetes-induced changed expression,
10 are involved in calcium transport (Table 3). Half of the
calcium GO group genes increased (Casq2, S100a4, Mgl1,
C1qb and C1qa) while the other half decreased (Fstl1,
Eef2k, Atp2b3, Myl6b and Gpd2). The other smaller
groups of ion transport genes are sodium and/or potas-
sium (3 genes), magnesium (2 genes), and several other
miscellaneous groups. There were also 3 collagen genes
listed in the ion GO group. Among specific genes, three
had altered expression in both muscles: Casq2 was in-
creased and Gpd2 was decreased in both tissues while
Myl6b was increased in diaphragm and decreased in
sternohyoid. Not including the collagen genes, the ion
transport genes were equally divided between increasing
and decreasing expression with diabetes in both muscles
(total 19 vs. 17 genes, not including collagen).
The collagen GO groups in the diaphragm had 3 genes

and the sternohyoid had 4 genes with altered expression
by diabetes. Col1a1 and Col1a2 had changed expression
in both tissues. For both muscles all collagen gene expres-
sion changes were exclusively decreased (total 7 vs. 0).
Two sets of GO groups were over-represented in the

diaphragm but not the sternohyoid muscle (Table 3).
The blood circulation GO groups had 2 genes with in-
creased and 3 genes with decreased expression. The oxi-
doreductase activity GO group had 4 genes with increased
and 6 genes with decreased expression.
Two other sets of GO groups were over-represented in
the sternohyoid but not the diaphragm muscle (Table 3).
The immune and inflammatory GO groups had more genes
with increased than decreased expression (total 7 vs 3).
Of note is that all 5 complement genes had increased
expression. The response to stress and wounding GO
groups had 10 genes with increased expression and 7
genes with decreased genes expression. A subset of these
genes were also included in the immune and inflammatory
GO groups, including the 5 complement components with
increased expression. However there were 10 genes in the
stress and wounding GO groups that were not included in
the immune and inflammatory GO groups.
To confirm changes in gene expression in diaphragm

and sternohyoid, high throughput RT-PCR was performed
on a subset of genes. The results which confirmed gene
expression microarray data are presented Table 4. The di-
rection of changes determined by PCR were in the same
direction as that determined by expression arrays. There
was a good and statistically significant correlation between
the magnitude of altered expression measured by gene
expression array and that measured by RT-PCR for these
genes (Figure 1).

Discussion
Lipid and carbohydrate metabolism
The pattern of carbohydrate and lipid substrate use is
regulated closely to meet the metabolic demands of
muscles at rest and during exercise and furthermore
plays important modulatory roles in the pathophysiology
of disease states such as diabetes. There is extensive bio-
chemical literature indicating that diabetes results in a
shift in cellular energetics away from carbohydrate and



Table 2 Specific Gene Ontology groups which were examined in more detail to which genes with changed expression
in diaphragm and sternohyoid of diabetic animals were assigned

GO group category & specific GO term Diaphragm # genes P value Sternohyoid # genes P value

Metbolism - Lipid

Lipid metabolic process 9 0.019 10 0.012

Long-chain fatty acid transport 2 0.048 3 0.0012

Cellular lipid metabolic process 9 0.010

Fatty acid metabolic process 6 0.0030

Lipid transport 4 0.0077

Fatty acid transport 3 0.0021

Metabolism - Carbohydrate

Carbohydrate metabolic process 7 0.040

Monosaccharide metabolic process 6 0.0037

Hexose metabolic process 6 0.0036

Cellular carbohydrate metabolic process 6 0.034

Carbohydrate biosynthetic process 4 0.016

Glycerol-3-phosphate dehydrogenase complex 2 0.018

Glycerol-3-phosphate dehydrogenase activity 2 0.012

Muscle contraction

Sarcomere 4 0.0066

Myofibril 4 0.010

Contractile fiber part 4 0.010

Contractile fiber 4 0.014

Striated muscle contraction 3 0.014

Muscle system process 6 0.0017

Muscle contraction 6 0.0015

Regulation of muscle contraction 4 0.0022

Ion transport

Ion transport 12 0.0015 11 0.0089

Calcium ion binding 9 0.024 12 0.0033

Inorganic anion transport 5 0.0072 5 0.010

Anion transport 5 0.015 6 0.0037

Regulation of ion transport 3 0.014

Channel activity 6 0.031

Magnesium ion binding 5 0.037

Collagen

Fibrillar collagen 3 0.0015 3 0.0016

Collagen 3 0.018 4 0.0012

Collagen type I 2 0.013 2 0.012

Blood circulation

Blood circulation 5 0.016

Circulatory system process 5 0.017

Oxidoreductase activity

Oxidoreductase activity 10 0.035

Immune & inflammatory

Immune system process 10 0.013

Immune response 9 0.0033

Defense response 8 0.0067

Immune effector process 6 0.000076
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Table 2 Specific Gene Ontology groups which were examined in more detail to which genes with changed expression
in diaphragm and sternohyoid of diabetic animals were assigned (Continued)

Acute inflammatory response 6 0.000027

Regulation of immune system process 6 0.000036

Inflammatory response 6 0.0082

Humoral immune response 6 7.5E-06

Regulation of immune response 6 0.000027

Activation of immune response 5 0.000070

Positive regulation of immune system process 5 0.00016

Complement activation 5 0.000014

Positive regulation of immune response 5 0.00013

Innate immune response 5 0.00025

Adaptive immune response 4 0.0062

Leukocyte mediated immunity 4 0.0071

Lymphocyte mediated immunity 4 0.0048

Adaptive immune response 4 0.0057

B cell mediated immunity 4 0.0032

Humoral immune response immunoglobulin 3 0.0064

Complement activation-classical pathway 3 0.0064

Complement component C1 complex 2 0.012

Response to stress & wounding

Response to stress 17 0.000096

Response to wounding 7 0.023
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towards lipid metabolism. Diabetic diaphragm has reduced
uptake and phosphorylation of glucose, phosphorylation
of fructose-6-phosphate, glycoysis, oxidation of pyruvate
and acetate, uptake of acetoacete, production of glycogen,
the proportion of the active complex of pyruvate de-
hydrogenase, and activites of hexokinase, phosphorylase
and phosphofructokinase [20-27]. In addition, diabetic
diaphragm has increased fat metabolism, uptake and
oxidation of free fatty acids, output of glycerol, capacity
for mobilization of intracellular lipids and intracellular
concentrations of triglycerides, free fatty acid and long-
chain fatty acyl-CoA [27-30]. In type I diabetic rat heart
glucose uptake and oxidation decreases, while fatty acid
metabolism increases, indicating that diabetes shifts the
pattern of cardiac energy metabolism in the same direc-
tion as the diaphragm [29,31]. Gerber et al. [32] has previ-
ously found that long chain fatty acids are the major
energy source in streptozotocin-induced type I diabetic
cardiac muscle with their beta-oxidation in mitochondria
generating nearly 70% of the ATP. The gene expression
changes which contribute to the carbohydrate to lipid
metabolic shift have only been partially elucidated. In
streptozotocin-induced diabetic rat diaphragm (a type 1
diabetes model), we found a small increase in expression
of genes involved in lipid metabolism and a large decrease
in expression of genes involved in carbohydrate metabo-
lism, indicating that the gene expression contribution to
the carbohydrate to lipid metabolic shift is directed most
strongly at changes in carbohydrate metabolism [12] In
contrast, type 1 diabetic rat heart has no significant
change in carbohydrate gene expression but substantially
augmented gene expression related to lipid metabolism
[14]. The findings of the present study indicate that in
diaphragm and sternohyoid muscles type 2 diabetes pro-
duces a similar overall shift favoring carbohydrate over
lipid metabolism gene expression that was seen in type 1
diabetic rat diaphragm. However, data from the current
and previous studies indicate that there are considerable
differences between type 1 and type 2 diabetes (Tables 5
and 6), as well as between diaphragm and sternohyoid, in
the number of genes with changed expression, the magni-
tude of the expression changes, and in the identity of the
specific genes involved.
In the present study there were two metabolism genes

with decreased expression in both the diaphragm and
sternohyoid. The first gene was acyl-CoA synthetase long-
chain family member 6 (Acsl6) which catalyzes the ligation
of long chain fatty acids with coenzyme A to produce long
chain acyl-CoAs (Figure 2). This gene also had decreased
expression in streptozotocin-induced diabetic diaphragm
[12] and heart [33]. Acetyl-CoA is converted to malonyl-
CoA which in turn inhibits CTP1 and the transport of
fatty acid into the cell [34]. The second metabolism gene
with decreased expression in both muscles was thyroid



Table 3 Genes with changed expression in diabetic diaphragm and sternohyoid that were assigned to specific
statistically over-represented Gene Ontology (GO) terms

DIAPHRAGM

Gene title Gene symbol FC

Lipid metabolism

Protein kinase, AMP-activated, alpha 1 catalytic subunit Prkaa1 2.2

Cell death-inducing DNA fragmentation factor Cidea 2.2

Diazepam binding inhibitor Dbi 1.7

Carnitine O-octanoyltransferase Crot 1.6

Adipose differentiation related protein Adfp 1.6

Low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor) Lrp1 1.5

Acyl-CoA synthetase long-chain family member 6 Acsl6 −1.7

Thyroid hormone responsive Thrsp −2.1

Transmembrane 7 superfamily member 2 Tm7sf2 −2.5

Carbohydrate metabolism

Protein kinase, AMP-activated, alpha 1 catalytic subunit Prkaa1 2.2

UDP-glucose pyrophosphorylase 2 Ugp2 −1.5

Solute carrier family 2 (facilitated glucose transporter), member 4 Slc2a4 −1.5

Coenzyme Q7 homolog, ubiquinone (yeast) Coq7 −1.6

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 Pfkfb1 −1.7

Glycerol-3-phosphate dehydrogenase 2, mitochondrial Gpd2 −1.7

Dicarbonyl L-xylulose reductase Dcxr −2.0

Muscle contraction

Cysteine and glycine-rich protein 3 Csrp3 4.2

Myosin binding protein H Mybph 3.0

PDZ and LIM domain 3 Pdlim3 1.6

Calsequestrin 2 (cardiac muscle) Casq2 1.5

Myosin, heavy chain 4, skeletal muscle Myh4 −3.6

Ion transport

Calcium channel

Myosin, light chain 6B, alkali, smooth muscle and non-muscle Myl6b 6.8

Calcium channel, voltage-dependent, beta 2 subunit Cacnb2 1.6

Sarcolipin Sln 1.6

Calsequestrin 2 (cardiac muscle) Casq2 1.5

Integrin alpha 7 Itga7 1.5

Glycerol-3-phosphate dehydrogenase 2, mitochondrial Gpd2 −1.7

S100 calcium binding protein A3 S100a3 −1.7

Parvalbumin Pvalb −2.0

Phospholamban Pln −2.4

Sodium/Potassium channels

Sodium channel, voltage-gated, type III, beta Scn3b 2.2

Potassium large conductance calcium-activated channel subfamily M, alpha member 1 Kcnma1 1.5

FXYD domain-containing ion transport regulator 7 Fxyd7 −1.7

Other channels

Low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor) Lrp1 1.5

Solute carrier family 30 (zinc transporter), member 4 Slc30a4 1.5

Aquaporin 1 Aqp1 −1.5

Chloride channel 4-2 Clcn4-2 −1.8
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Table 3 Genes with changed expression in diabetic diaphragm and sternohyoid that were assigned to specific
statistically over-represented Gene Ontology (GO) terms (Continued)

Collagen

Collagen, type I, alpha 2 Col1a2 −1.6

Collagen, type III, alpha 1 Col3a1 −1.7

Collagen, type I, alpha 1 Col1a1 −2.0

Ficolin (collagen/fibrinogen domain containing) 1 Fcn1 −2.1

Collagen

Collagen, type I, alpha 2 Col1a2 −1.6

Collagen, type III, alpha 1 Col3a1 −1.7

Collagen, type I, alpha 1 Col1a1 −2.0

Blood circulation

Cysteine and glycine-rich protein 3 Csrp3 4.2

Potassium large conductance calcium-activated channel subfamily M, alpha member 1 Kcnma1 1.5

Collagen, type III, alpha 1 Col3a1 −1.7

Apelin Apln −2.2

Phospholamban Pln −2.4

Oxidoreductase activity

2,4-dienoyl CoA reductase 1, mitochondrial Decr1 2.0

IMP (inosine monophosphate) dehydrogenase 2 Impdh2 1.6

Potassium large conductance calcium-activated channel subfamily M, alpha member 1 Kcnma1 1.5

Solute carrier family 30 (zinc transporter), member 4 Slc30a4 1.5

Coenzyme Q7 homolog, ubiquinone (yeast) Coq7 −1.6

Glycerol-3-phosphate dehydrogenase 2, mitochondrial Gpd2 −1.7

S100 calcium binding protein A3 S100a3 −1.7

Dicarbonyl L-xylulose reductase Dcxr −2.0

Phytanoyl-CoA dioxygenase domain containing 1 Phyhd1 −2.1

Transmembrane 7 superfamily member 2 Tm7sf2 −2.5

STERNOHYOID

Gene title Gene Symbol FC

Lipid metabolism

Acyl-CoA thioesterase 2 Acot2 2.4

Nudix (nucleoside diphosphate linked moiety X)-type motif 4 Nudt4 2.1

Retinol saturase (all trans retinol 13,14 reductase) Retsat 1.9

Carnitine palmitoyltransferase 1b, muscle Cpt1b 1.7

Carnitine O-octanoyltransferase Crot 1.6

Carnitine palmitoyltransferase 2 Cpt2 1.5

Solute carrier family 27 (fatty acid transporter), member 1 Slc27a1 1.5

Acyl-CoA synthetase long-chain family member 6 Acsl6 −1.6

Thyroid hormone responsive Thrsp −2.1

Sterol regulatory element binding transcription factor 1 Srebf1 −2.4

Carbohydrate metabolism

Glycerol-3-phosphate dehydrogenase 1 (soluble) Gpd1 −1.6

Glycerol-3-phosphate dehydrogenase 2, mitochondrial Gpd2 −1.8

Muscle contraction

Myosin binding protein H Mybph 8.6

Complement component 4a C4a 2.0

Calsequestrin 2 (cardiac muscle) Casq2 2.0

Cholinergic receptor, nicotinic, delta Chrnd 1.9
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Table 3 Genes with changed expression in diabetic diaphragm and sternohyoid that were assigned to specific
statistically over-represented Gene Ontology (GO) terms (Continued)

Heat shock protein, alpha-crystallin-related, B6 Hspb6 −1.6

Guanidinoacetate N-methyltransferase Gamt −1.6

Ion transport

Calcium channel

S100 calcium-binding protein A4 S100a4 1.9

Complement component 1, q subcomponent, beta polypeptide C1qb 1.7

Complement component 1, q subcomponent, alpha polypeptide C1qa 1.6

Macrophage galactose N-acetyl-galactosamine specific lectin 1 Mgl1 1.5

Calsequestrin 2 (cardiac muscle) Casq2 1.5

Follistatin-like 1 Fstl1 −1.5

Glycerol-3-phosphate dehydrogenase 2, mitochondrial Gpd2 −1.7

Eukaryotic elongation factor-2 kinase Eef2k −2.0

ATPase, Ca++ transporting, plasma membrane 3, (AKA PMCA2) Atp2b3 −2.1

Myosin, light chain 6B, alkali, smooth muscle and non-muscle Myl6b −2.5

Sodium/Potassium channels

FXYD domain-containing ion transport regulator 2 Fxyd2 1.6

Potassium large conductance calcium-activated channel subfamily M, alpha member 1 Kcnma1 1.5

ATPase, Na+/K+ transporting, beta 2 polypeptide Atp1b2 −1.6

Magnesium

Inositol (myo)-1(or 4)-monophosphatase 2 Impa2 1.8

Acyl-CoA synthetase long-chain family member 6 Acsl6 −1.6

Other channels

Latent transforming growth factor beta binding protein 1 Ltbp1 2.0

Cholinergic receptor, nicotinic, delta Chrnd 1.9

2,4-dienoyl CoA reductase 2, peroxisomal Decr2 /// Rab11fip3 −1.6

Solute carrier family 16, member 3 (monocarboxylic acid transporter 4) Slc16a3 −1.7

Amylase, alpha 1A (salivary) Amy1a −1.7

Collagen

Collagen, type V, alpha 1 Col5a1 −1.8

Collagen, type I, alpha 1 Col1a1 −1.9

Collagen, type I, alpha 2 Col1a2 −2.2

Collagen

Collagen, type V, alpha 1 Col5a1 −1.8

Collagen, type XV, alpha 1 Col15a1 −1.9

Collagen, type I, alpha 1 Col1a1 −1.9

Collagen, type I, alpha 2 Col1a2 −2.2

Immune & inflammatory

Cyclin-dependent kinase inhibitor 1A (p21, Cip1) Cdkn1a 2.4

Fc fragment of IgG, low affinity IIb, receptor (CD32) Fcgr2b 2.2

Complement component 4a C4a 2.0

Adipsin Adn 1.8

Complement component 1, q subcomponent, beta polypeptide C1qb 1.7

Complement component 1, q subcomponent, alpha polypeptide C1qa 1.6

Complement factor H Cfh 1.6

Dipeptidylpeptidase 4 Dpp4 −1.9

Myxovirus (influenza virus) resistance 1 Mx1 −1.9

Spondin 2, extracellular matrix protein Spon2 −2.0
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Table 3 Genes with changed expression in diabetic diaphragm and sternohyoid that were assigned to specific
statistically over-represented Gene Ontology (GO) terms (Continued)

Response to stress & wounding

Cyclin-dependent kinase inhibitor 1A (p21, Cip1) Cdkn1a 2.4

Acyl-CoA thioesterase 2 Acot2 2.4

Fc fragment of IgG, low affinity IIb, receptor (CD32) Fcgr2b 2.2

Complement component 4a C4a 2.0

Deleted in malignant brain tumors 1 Dmbt1 1.9

Complement factor D (adipsin) Adn 1.8

Complement component 1, q subcomponent, beta polypeptide C1qb 1.7

Potassium large conductance calcium-activated channel subfamily M, alpha member 1 Kcnma1 1.6

Complement component 1, q subcomponent, alpha polypeptide C1qa 1.6

Complement factor H Cfh 1.6

Epidermal growth factor receptor Egfr −1.5

SRY (sex determining region Y)-box 4 Sox4 −1.6

Serine (or cysteine) peptidase inhibitor, clade H, member 1 Serpinh1 −1.6

Heat shock protein, alpha-crystallin-related, B6 Hspb6 −1.6

Collagen, type I, alpha 1 Col1a1 −1.9

Heat shock protein 2 Hspa2 −2.0

Sterol regulatory element binding transcription factor 1 Srebf1 −2.4

Fold changes (FC) in gene expression are represented in the last column.
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hormone responsive (Thrsp), which is believed to be
involved in lipogenesis [35,36]. The diaphragm had
decreased expression of transmembrane 7 superfamily
member 2 (Tm7sf2) which is involved in cholesterol
biosynthesis, [37] while the sternohyoid had a decrease
in sterol regulatory element binding transcription factor 1
(Srebf1) which regulates the transcription of genes im-
portant for sterol biosynthesis. Srebf1 also had decreased
expression in limb muscle of 12-week old type 2 diabetic
rat [11].
There were several genes with increased expression

in the lipid metabolism GO group that increased in
previous studies of diabetes. 2,4-dienoyl CoA reductase
1 (Decr1) catalyzes the conversion of 2,4 dienoyl-CoA
to cis-Δ3-enoyl-CoA and is involved in the mitochondrial
long-chain fatty acid beta-oxidation pathway (Figure 2).
In previous studies, Decr1 increased 5-fold in type 1
streptozotocin diabetic rat liver mitochondia [38], 2-fold
in our previous studies in type 1 diabetic rat diaphragm
[12] and heart [14], 2-fold in type 1 diabetic rat heart
[39] and nearly four-fold in limb skeletal muscle of
12 week old type 2 diabetic rats [11]. Adipose differen-
tiation related protein (Adfp) has increased expression
in db/db mouse kidney [40]. Cell death-inducing DNA
fragmentation factor (Cidea), also increased in the dia-
betic diaphragm, may play a role in lipolysis, but its
role is still not clearly defined. In previous studies
Cidea-null mutants have been diabetes-resistant [41,42].
It is possible that Cidea functions by modulating fatty
acid metabolism since the Cidea-null mutants had
much lower concentrations of plasma FFA and triglyc-
erides [42].
In the sternohyoid, four out of the six lipid metabolism

genes with increased expression (Cpt1b, Cpt2, Acot2 and
Slc27a1) are also involved directly in fatty acid trans-
port and oxidation. Carnitine palmitoyltransferase (Cpt1b)
catalyses the transfer of long chain fatty acids to carnitine
for translocation across the mitochondrial inner mem-
brane and then Cpt2 is an inner mitochondrial membrane
protein that converts long chain acylcarnitine to long
chain acyl-CoA (Figure 2). They are also increased in
streptozotocin-induced diabetic rat heart [32]. Cpt1b has
heterogeneous changes, depending on tissue type. Cpt1b
expression is increased in human type 2 diabetic adipose
tissue [43] and type 1 diabetic rat heart [39]. However, it is
reduced in human type II vastus lateralis [43] and
streptozotocin-induced diabetic rat liver [44]. Acyl-CoA
thioesterase 2 (Acot 2 or Mte1), catalyzes the hydrolysis of
fatty acyl-CoA molecules into nonesterified fatty acid an-
ions and free CoA in the mitochondria and has increased
expression in heart and soleus of streptozotocin-induced
diabetic rats [45]. Slc27a1 is a fatty acid transporter,
which increases fatty acid supply when its expression is
increased, and therefore is thought to increase fatty acid
metabolism [46].
There were only two genes that had significantly de-

creased expression levels in the sternohyoid carbohydrate
metabolism GO group (Gpd1 and Gpd2). Gpd2 expres-
sion was also decreased in diaphragm muscle. Gpd1 and
Gpd2 are glycerol-3-phosphate dehydrogenase genes that



Table 4 Confirmatory results for changes in gene
expression in diaphragm and sternhyoid measured by
real-time PCR

DIAPHRAGM

Gene
symbol

Fold change by
microarray

Fold change
by PCR

P value
by PCR

Csrp3 4.2 7.6 0.022

Mybph 3.0 4.6 0.0010

Decr1 2.0 3.9 <0.001

Sln 1.6 3.3 0.037

Dbi 1.7 2.6 0.013

Adfp 1.6 2.1 <0.001

Kcnma1 1.5 2.1 <0.001

Crot 1.6 2.0 <0.001

Lrp1 1.5 1.9 0.004

Prkaa1 2.2 1.8 <0.001

Gpd2 −1.7 −1.2 0.010

Acsl6 −1.7 −1.4 0.0060

Pln −2.4 −1.9 0.017

Apln −2.2 −2.2 <0.001

Myh4 −3.6 −4.8 0.01

STERNOHYOID

Gene
symbol

Fold change by
microarray

Fold change
by PCR

P value
by PCR

Decr1 3.3 4.7 <0.001

Cdkn1a 2.4 3.7 0.0090

Acot2 2.4 3.3 0.0060

Fcgr2b 2.2 4.0 <0.001

C4a 2.0 2.4 <0.001

Adn 1.8 2.5 0.0060

Cpt1b 1.7 2.2 0.0050

Kcnma1 1.6 1.9 0.0030

Crot 1.6 2.9 0.0020

C1qa 1.6 2.0 0.038

Cfh 1.6 1.7 0.0010

Cpt2 1.5 2.1 0.0040

Slc27a1 1.5 2.1 0.023

Acsl6 −1.6 −1.4 0.0020

Fold changes (FC) in gene expression are represented in the last column.
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are important members of the glycerol phosphate shuttle
which are involved in the interconversion of glycerol-
3-phosphate and dihydroxyacetone phosphate with
concomitant reduction of FAD. Gpd2 also had de-
creased expression in the streptozotocin-induced dia-
betic rat heart [14] and diaphragm [12].
In addition to Gpd2, there were five other genes with

decreased expression in the diaphragm that are involved
in carbohydrate metabolism (Slc2a4, Ugp2, Dcxr, Pfkfb1,
Coq7). Slc2a4, Glucose Transporter 4, is involved in
transporting glucose across the membrane [47] and has
diminished expression and function in type II diabetic
rat heart [48] and slow muscle fibers and omental fat
of type II diabetic patients [49,50]. Ugp2, UDP-glucose
pyrophosphorylase 2 is essential for sucrose and poly-
saccharide synthesis [51] and has decreased expression
in limb muscle of 12-week old type 2 diabetic rats [11].
The remaining 3 decreased diaphragm carbohydrate
metabolism genes, Dcxr, Pfkfb1 and Coq7, were not
significantly changed in any previous diabetes studies.
Dicarbonyl L-xylulose reductase (Dcxr) functions in
the metabolism of glucose [52]. 6-phosphofructo-2-
kinase (Pfkfb1) is a rate limiting enzyme of glycolysis
[53-57] which catalyzes the synthesis and degradation
of fructose 2,6-bisphosphate. Coq7, coenzyme Q7, is a
component of the electron transport chain which ge-
nerates energy in the form of ATP.

Muscle contraction
There has been a paucity of muscle contraction genes
found to be altered due to diabetes in previous gene
array studies. We are not aware of any muscle genes that
were changed in the sternohyoid that have been found
to be changed previously. However, the expression of
cysteine and glycine-rich protein (Csrp3) gene increased
in calf muscle in streptozotocin-induced diabetic mice,
[58] similar to the diaphragm present study. This gene is
thought to play a role in myogenesis. Mybph and Casq2
were the 2 genes that were increased in both muscles in
the present study. Mybph is a skeletal muscle binding
protein which binds myosin and is probably involved in
the interaction with thick myofilaments in the A-band.
Casq2 is a calcium binding protein that stores calcium
for muscle contraction.

Ion channels and transport
In our previous two studies of streptozotocin-induced type
I diabetic heart and diaphragm gene expression we found
decreased expression in 13 calcium binding genes in heart
[14] and 10 calcium ion genes in the diaphragm [12].
Similar to the diabetic diaphragm in the present study,

there was decreased expression of parvalbumin (Pvalb)
in the nerve, [59] gastrocnemius [8] and diaphragm [12]
of streptozotocin-induced type I diabetic rats. This pro-
tein binds two calcium ions and is involved in muscle re-
laxation. Previous studies have found conflicting results
in levels of phospholamben (Pln) expression in diabetes.
Pln is a key regulator of the sarcoplasmic reticulum
ATPase and thus involved in calcium handling [60]. An
increase in the mRNA and phospholamben protein
levels is postulated to cause an increase in sarcoplasmic
reticulum calcium reuptake inhibition [61]. In contrast
to the current study, Zhong et al. [62] found a 31-60%
increase in Pln in 4 and 6-week old streptozotocin-
induced type I diabetic rat heart [62]. There was one



Figure 1 Relationship between fold changes in gene expression measured by gene expression microarray and real-time PCR.
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previous study that found decreased Pln expression in
streptozotocin-induced type I diabetic rat heart [63]. They
also measured the amount of Pln phosphorylation by
CaMK and PKA and found that to also be decreased and
therefore postulated that because Pln phosphorylation
inhibits the Pln inhibitory action, the decreased amount of
Pln was still able to cause impaired Ca uptake. Glycerol-
3-phosphate dehydrogenase (Gpd2) enhances lipid meta-
bolism by binding calcium. Expression of this protein was
decreased in streptozotocin-induced diabetic rat heart and
diaphragm, [12,14] similar to the current study. The last
decreased calcium binding gene in this group, S100 cal-
cium binding protein A3 (S100a3), has not changed in any
previous experiments with diabetes. The five increased
calcium genes (Myl6b, Casq2, Itga7, Cacnb2 and Sln) have
not had changed expression in previous diabetes studies.
Their functions involve calcium binding and calcium
channels. Sarcolipin (Sln) is also involved in sarcoplasmic
reticulum calcium regulation similar to phospholamben,
so it is possible that the increase in Sln expression could
be a compensatory mechanism for the decrease in Pln.
In the diabetic sternohyoid, three of the five calcium

channel genes with decreased expression (Fstl1, Atp2b3,
Eef2k, Gpd2, Myl6b) were decreased in previous diabetes
studies. Follistatin-like 1 (Fstl1) and glycerol-3-phosphate
dehydrogenase (Gpd2) were decreased in streptozotocin-
induced type 1 diabetic heart [14]. Atp2b3 protein content
was decreased in insulin-resistant Wistar rat islet plasma
membranes [64]. Several eukaryotic translation initiation
and elongation factors are decreased in streptozotocin-
induced diabetic rodent gastrocnemius muscle [8,65],
however until the present study eukaryotic elongation
factor kinase (Eef2k) has not previously been significantly
changed due to diabetes. Eef2k is completely dependent
on calcium and calmodulin and provides a key link be-
tween cellular energy status and the inhibition of pro-
tein synthesis [66-68]. Myl6b has not been significantly
changed in previous studies involving diabetes. Five cal-
cium genes were increased in the sternohyoid (Casq2,
S100a4, Mgl1, C1qb and C1qa). The S100a4 gene was
upregulated in a previous study in the peripheral leuko-
cytes of streptozotocin-induced diabetic rats [69], while
the other 4 did not have changed expression levels due
to diabetes.
There are several genes that were classified in the ion

channel GO grouping in the diaphragm that are involved
in other channels besides calcium ions. These genes are
Fxyd7, Scn3b and Kcnma1 which are involved in sodium
and potassium channels, Clcn4-2, which is a voltage-gated
chloride channel protein, Aqp1, which is a water channel,
and Slc30a4, which is a zinc transporter. Lrp1 is a trans-
membrane receptor which functions in the endocytosis of
over 40 structurally and functionally distinct ligands
[70,71]. Aquaporin 1 (Aqp1) is the only non-calcium
ion gene that has previously been examined in diabetes,
however with conflicting results. Baelde et al. [72] found
an increase in Aqp1 in human type II diabetic kidney,
while others found no changes in protein levels in
kidneys of streptozotocin-induced diabetic mice [73]
and streptozotocin-induced diabetic rats [74].
There are also several genes that were classified in the

ion channel GO grouping in the sternohyoid that are in-
volved in other ion channels besides calcium. These genes
are Fxyd2, Atp1b2 and Kcnma1 which are involved in so-
dium and potassium channels, Impa2 and Acsl6, which
are regulated by magnesium, Slc16a3, which transports



Table 5 Specific Gene Ontology groups and number of genes which were examined in more detail in type II diabetic
diaphragm and the corresponding changes in genes in type I diabetic diaphragm in a previous study (12)

GO group category & specific GO term Diaphragm Diaphragm

Type II Type I

# genes P value # genes P value

Metbolism - Lipid

Lipid metabolic process 9 0.019

Long-chain fatty acid transport 2 0.048

Cellular lipid metabolic process

Fatty acid metabolic process

Lipid transport

Fatty acid transport

Metabolism - Carbohydrate

Carbohydrate metabolic process 7 0.04 8 0.000061

Monosaccharide metabolic process 6 0.0037 5 0.0059

Hexose metabolic process 6 0.0036 5 0.0059

Cellular carbohydrate metabolic process 6 0.034 5 0.005

Carbohydrate biosynthetic process 4 0.016

Glycerol-3-phosphate dehydrogenase complex

Glycerol-3-phosphate dehydrogenase activity

Muscle contraction

Sarcomere 4 0.0066

Myofibril 4 0.01

Contractile fiber part 4 0.01

Contractile fiber 4 0.014

Striated muscle contraction 3 0.014

Muscle system process

Muscle contraction

Regulation of muscle contraction

Ion transport

Ion transport 12 0.0015

Calcium ion binding 9 0.024 10 0.00003

Inorganic anion transport 5 0.0072

Anion transport 5 0.015

Regulation of ion transport 3 0.014

Channel activity 6 0.031

Magnesium ion binding

Collagen

Fibrillar collagen 3 0.0015 3 0.00033

Collagen 3 0.018 4 0.00014

Collagen type I 2 0.013

Blood circulation

Blood circulation 5 0.016

Circulatory system process 5 0.017

Oxidoreductase activity

Oxidoreductase activity 10 0.035 8 0.024
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Table 6 Genes with changed expression in diaphragm of type II and type I (12) diabetic rats that were assigned to
specific statistically over-represented gene ontology (GO) terms

TYPE II DIAPHRAGM

Gene Fold

Oxidoreductase activity Symbol Change

2,4-dienoyl CoA reductase 1, mitochondrial Decr1 2

IMP (inosine monophosphate) dehydrogenase 2 Impdh2 1.6

Potassium large conductance calcium-activated channel subfamily M, alpha member 1 Kcnma1 1.5

Solute carrier family 30 (zinc transporter), member 4 Slc30a4 1.5

Coenzyme Q7 homolog, ubiquinone (yeast) Coq7 −1.6

Glycerol-3-phosphate dehydrogenase 2, mitochondrial Gpd2 −1.7

S100 calcium binding protein A3 S100a3 −1.7

Dicarbonyl L-xylulose reductase Dcxr −2

Phytanoyl-CoA dioxygenase domain containing 1 Phyhd1 −2.1

Transmembrane 7 superfamily member 2 Tm7sf2 −2.5

Carbohydrate metabolism

protein kinase, AMP-activated, alpha 1 catalytic subunit Prkaa1 2.2

UDP-glucose pyrophosphorylase 2 Ugp2 −1.5

Solute carrier family 2 (facilitated glucose transporter), member 4 Slc2a4 −1.5

Coenzyme Q7 homolog, ubiquinone (yeast) Coq7 −1.6

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 Pfkfb1 −1.7

Glycerol-3-phosphate dehydrogenase 2, mitochondrial Gpd2 −1.7

Dicarbonyl L-xylulose reductase Dcxr −2

Collagen

Collagen, type I, alpha 2 Col1a2 −1.6

Collagen, type III, alpha 1 Col3a1 −1.7

Collagen, type I, alpha 1 Col1a1 −2

Ficolin (collagen/fibrinogen domain containing) 1 Fcn1 −2.1

TYPE I DIAPHRAGM

Oxidoreductase activity

Cytochrome P450, family 2, subfamily e, polypeptide 1 Cyp2e1 6

Flavin containing monooxygenase 3 Fmo3 2.9

Crystallin, lamda 1 Cryl1 2.4

Lysyl oxidase Lox 2.3

Ceruloplasmin Cp 2.2

2,4-dienoyl CoA reductase 1, mitochondrial Decr1 2.2

Aldehyde oxidase 1 Aox1 2.1

P450 (cytochrome) oxidoreductase Por 2.1

Carbohydrate metabolism

Neuraminidase 2 Neu2 −8.5

Phosphofructokinase, liver, B-type Pfkl −3.7

Solute carrier family 37 (glycerol-6-phosphate transporter), member 4 Slc37a4 −2.5

Glycerol-3-phosphate dehydrogenase 2 Gpd2 −2.3

Amylase 1, salivary Amy1 −2.3

Phosphoglycerate mutase 2 Pgam2 −2.1

Lactate dehydrogenase A Ldha −2

Phosphoglucomutase 1 Pgm1 −2

Dihydrolipoamide S-acetyltransferase Dlat −2
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Table 6 Genes with changed expression in diaphragm of type II and type I (12) diabetic rats that were assigned to
specific statistically over-represented gene ontology (GO) terms (Continued)

Collagen

Collagen, type III, alpha 1 Col3a1 −3.7

Collagen, type 1, alpha 1 Col1a1 −3.5

Procollagen, type I, alpha 2 Col1a2 −3.2

Fibrillin 1 Fbn1 −2.8

Secreted acidic cysteine rich glycoprotein Sparc −2.7

Collagen, type V, alpha 1 Col5a1 −2.4

Collagen, type V, alpha 3 Col5a3 −2.2

Fold changes in gene expression are represented in the last column. Genes in bold are common between type II and type I.

Figure 2 Genes with changed expression in diabetic diaphragm and diabetic sternohyoid muscle that are involved in specific steps of
fatty acid β-oxidation. Genes with increased expression in both muscles diaphragm are indicated in red; genes with decreased expression in
both muscles are indicated in green. Genes with increased expression in sternohyoid only are indicated in purple. Numbers indicate fold changes
in diaphragm/sternohyoid.
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monocarboxylate, Amy1a, which binds bicarbonate,
Chrnd, which binds acetylcholine, and Ltbp1, which
binds TGF-B in order to regulate several collagens.
Similar to the present study, Fxyd2, a Na/K ATPase
regulator, has increased in human type II diabetic kid-
neys [72]. Changes in Atp1b2 and Kcnma1 expression
have not been found in previous studies. In the present
study, Impa2 increased and Acsl6 decreased. However
in previous studies, the expression of Impa2 was de-
creased in type 2 genetically-affected (OLETF) diabetic
cornea [75] and the expression of Acsl6 was decreased
in streptozotocin-induced diabetic rat diaphragm [12]
and heart [33]. The remaining non-calcium ion channel
genes in the sternohyoid, Slc16a3, Amy1a, Chrnd and
Ltbp1 did not have changed expression in previous
studies of diabetes.

Collagen
In the present study there were several collagen genes
which were decreased in type 2 diabetic diaphragm
(Col1a1, Col1a2, Col3a1) and sternohyoid (Col1a1,
Col1a2, Col5a1), similar to previous studies. In previous
studies, all of these collagen genes were significantly
decreased in streptozotocin-induced diabetic rat dia-
phragm with fold changes greater than 2.0 [12]. Col1a2,
Col3a1 and Col5a1expression were also decreased in
streptozotocin-induced diabetic rat heart [14]. Col1a1
had decreased expression in db/db type 2 diabetic mice
[76] and streptozotocin-induced diabetic rat gastrocne-
mius [8]. Col1a2 was decreased in newly forming bone
of streptozotocin-induced diabetic mice [77].

Blood circulation
In the blood circulation group that had significant
changes in only the diaphragm, there was only one gene
that was not also listed in another group and therefore
not mentioned yet. Apelin (Apln) plays a role in normal
glucolipidic metabolism [78] and has had conflicting re-
sults in previous experiments. The results of the present
study agree with the results previous results of low
plasma levels in type II diabetic Chinese humans
[79,80]. There have also been other reports of both
increased and decreased Apln levels in patients with
type 2 diabetes [79,81].

Oxidoreductase
In a previous study in streptozotocin-induced diabetic
rat diaphragm, we found an increased expression in
genes related to oxidative stress [12]. In the present
study, there were 3 genes that were not also listed in
another GO group (Decr1, Impdh2, Phyhd1). Decr1 ca-
talyzes the conversion of trans-2,3-didehydroacyl-CoA
and NADP(+) into trans,trans-2,3,4,5-tetradehydroacyl-
CoA and NADPH. Similar to the present study, we
have previously found an increase in expression in
streptozotocin-induced diabetic rat heart [14]. Others
have also found a 5-fold stimulation of activity in the
liver mitochondria of streptozotocin-induced diabetic
rats [38] and an increased expression in limb skeletal
muscle of Zucker diabetic fatty rats [11]. Impdh2 and
Phyhd1 have not had changed expression in previous
diabetic studies.

Immune & inflammatory, and response to stress &
wounding
Most of the genes in these categories had increased
expression in the diabetic sternohyoid, similar to a
previous study in streptozotocin-induced diabetic liver
[82]. However, these increases were completely absent
in the diabetic diaphragm in the present study as well
as type 1 diabetic diaphragm in our previous study12.
Some of the sternohyoid genes with increased expression
are depicted on the complement activation, classical path-
way (Figure 3). One of the genes involved in the pathway
is adipsin (Adn). Adipsin assembles with complement
factor B to enzymatically cleave complement factor C3
to C3a-des-arg/ASP (acylation stimulating protein),
which stimulates triglyceride production in adipose
tissue [83]. It is the one complement component that
has had changed expression due to diabetes in previous
studies. Adipsin has increased in streptozotocin-induced
diabetic mouse endothelium [83] and in streptozotocin-
induced diabetic rat adipose tissue [84]. The complement
factors (C1qb, C1qa, Cfh) are also involved in the comple-
ment activation classical pathway (Figure 3), but have not
changed expression levels due to diabetes in previous
studies. Cdkn1a is a cyclin-dependent kinase inhibitor
[82]. It regulates cell division by arresting the cell cycle
and is induced by oxidative stress [85,86]. Cdkn1a has
increased expression in cardiac and soleus muscle of
streptozotocin-induced diabetic rats [45] and liver of
streptozotocin-induced diabetic mice [82].
All of the immune and inflammatory genes in the

sternohyoid with increased expression are contained
in the stress and wounding group too. The three
genes with decreased expression (Dpp4, Mx1 and
Spon2) are not contained in the stress and wounding
group or any other of the significant GO groups in
this study. Dipeptidyl peptidase IV (Dpp4) is a serine
protease that exists on the surface of various types
of cells and in a soluble form in plasma [87]. Circu-
lating Dpp4 levels have been reported to be both in-
creased [88,89] and decreased [90,91] in type 2 diabetic
patients and increased in type I diabetic patients [88].
Dpp4 increases have been measured in many tissues of
streptozotocin-induced diabetic rats [92]. Mx1 and Spon2
have had altered gene expression due to diabetes in any
previous study.



Figure 3 Genes with changed expression in diabetic sternohyoid muscle that are involved in specific steps of the complement activation
pathway. Genes with increased expression in sternohyoid only are indicated in purple, with numbers indicating fold changes. There were no changes
in complement-related gene expression changes in the diaphragm.
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Conclusions
In conclusion, the current study shows that type 2 dia-
betes produces significant changes in gene expression of
the diaphragm and sternohyoid muscles, many of which
were not expected based on previous data on type 1
streptozotocin-induced diabetic diaphragm [12] as well
as on both types 1 and type 2 diabetes in other muscle
types [8-11,14,32,93]. The diaphragm had more gene
expression decreases in carbohydrate metabolism due
to diabetes than the sternohyoid, while the increases in
lipid metabolism genes were similar in both muscles.
Thus there was a larger metabolic gene expression shift
in the diaphragm than the sternohyoid. However, for
several other processes there were more closely shared
magnitudes of gene expression changes (muscle contrac-
tion, ion transport, collagen). In addition, there were se-
veral gene expression changes in the diabetic sternohyoid
that were not present in the diaphragm (immune & in-
flammatory, response to stress & wounding) and vice
versa (oxidoreductase activity, blood circulation). The
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upper airway muscles and diaphragm therefore have tar-
gets in common as well as individual targets for future
treatment strategies aimed at improving muscle function
in diabetes and obstructive sleep apnea.
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